102 research outputs found

    From the Eye of the Albatrosses: A Bird-Borne Camera Shows an Association between Albatrosses and a Killer Whale in the Southern Ocean

    Get PDF
    Albatrosses fly many hundreds of kilometers across the open ocean to find and feed upon their prey. Despite the growing number of studies concerning their foraging behaviour, relatively little is known about how albatrosses actually locate their prey. Here, we present our results from the first deployments of a combined animal-borne camera and depth data logger on free-ranging black-browed albatrosses (Thalassarche melanophrys). The still images recorded from these cameras showed that some albatrosses actively followed a killer whale (Orcinus orca), possibly to feed on food scraps left by this diving predator. The camera images together with the depth profiles showed that the birds dived only occasionally, but that they actively dived when other birds or the killer whale were present. This association with diving predators or other birds may partially explain how albatrosses find their prey more efficiently in the apparently β€˜featureless’ ocean, with a minimal requirement for energetically costly diving or landing activities

    Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions

    Get PDF
    Purpose Treatment of large cartilage lesions of the knee in weight-bearing areas is still a controversy and challenging topic. Autologous osteochondral mosaicplasty has proven to be a valid option for treatment but donor site morbidity with most frequently used autografts remains a source of concern. This study aims to assess clinical results and safety profile of autologous osteochondral graft from the upper tibio-fibular joint applied to reconstruct symptomatic osteochondral lesions of the knee. Methods Thirty-one patients (22 men and 9 women) with grade 4 cartilage lesions in the knee were operated by mosaicplasty technique using autologous osteochondral graft from the upper tibio-fibular joint, between 1998 and 2006. Clinical assessment included visual analog scale (VAS) for pain and Lysholm score. All patients were evaluated by MRI pre- and post-operatively regarding joint congruency as good, fair (inferior to 1 mm incongruence), and poor (incongruence higher than 1 mm registered in any frame). Donor zone status was evaluated according to specific protocol considering upper tibio-fibular joint instability, pain, neurological complications, lateral collateral ligament insufficiency, or ankle complaints. Results Mean age at surgery was 30.1 years (SD 12.2). In respect to lesion sites, 22 were located in weight-bearing area of medial femoral condyle, 7 in lateral femoral condyle, 1 in trochlea, and 1 in patella. Mean follow-up was 110.1 months (SD 23.2). Mean area of lesion was 3.3 cm 2 (SD 1.7), and a variable number of cylinders were used, mean 2.5 (SD 1.3). Mean VAS score improved from 47.1 (SD 10.1) to 20.0 (SD 11.5); p = 0.00. Similarly, mean Lysholm score increased from 45.7 (SD 4.5) to 85.3 (SD 7.0); p = 0.00. The level of patient satisfaction was evaluated, and 28 patients declared to be satisfied/very satisfied and would do surgery again, while 3 declared as unsatisfied with the procedure and would not submit to surgery again. These three patients had lower clinical scores and kept complaints related to the original problem but unrelated to donor zone. MRI score significantly improved at 18–24 months comparing with pre-operative (p = 0.004). No radiographic or clinical complications related to donor zone with implication in activity were registered. Conclusions This work corroborates that mosaicplasty technique using autologous osteochondral graft from the upper tibio-fibular joint is effective to treat osteochondral defects in the knee joint. No relevant complications related to donor zone were registered

    Bi-directional cell-pericellular matrix interactions direct stem cell fate

    Get PDF
    Modifiable hydrogels have revealed tremendous insight into how physical characteristics of cells’ 3D environment drive stem cell lineage specification. However, in native tissues, cells do not passively receive signals from their niche. Instead they actively probe and modify their pericellular space to suit their needs, yet the dynamics of cells’ reciprocal interactions with their pericellular environment when encapsulated within hydrogels remains relatively unexplored. Here, we show that human bone marrow stromal cells (hMSC) encapsulated within hyaluronic acid-based hydrogels modify their surroundings by synthesizing, secreting and arranging proteins pericellularly or by degrading the hydrogel. hMSC’s interactions with this local environment have a role in regulating hMSC fate, with a secreted proteinaceous pericellular matrix associated with adipogenesis, and degradation with osteogenesis. Our observations suggest that hMSC participate in a bi-directional interplay between the properties of their 3D milieu and their own secreted pericellular matrix, and that this combination of interactions drives fate

    Tissue engineering of functional articular cartilage: the current status

    Get PDF
    Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality

    Isolation and characterization of microsatellite loci in the icefish Chionodraco rastrospinosus (Perciformes, Notothenioidea, Channichthyidae)

    No full text
    We characterized eight polymorphic microsatellites in the icefish Chionodraco rastrospinosus (Perciformes, Notothenioidea, Channichthyidae). Microsatellites were isolated from a partial genomic library enriched for an AC motif. Chionodraco rastrospinosus is an endemic species inhabiting southern ocean waters surrounding the Antarctic Peninsula, the South Shetland Islands, and the South Orkney Islands. An excess of homozygotes was observed in seven out of the eight investigated loci; however, presence of null alleles was detected only for three of them suggesting that other factors may act in reducing heterozygosity. These molecular markers will be useful to investigate icefish genetic structure, possibly providing insights on its effective population size and demographic history

    Going beyond composites: Conducting a factor-based PLS-SEM analysis

    No full text
    There has been a long and ongoing debate, at points resembling an acrimonious dispute, among proponents and detractors of the use of the partial least squares (PLS) approach for structural equation modeling (SEM). The compositefactor estimation dichotomy has been the epicenter of this debate. In this chapter, we briefly discuss the implementation of a new method to conduct factor-based PLS-SEM analyses, which could be a solid step in the resolution of this debate. This method generates estimates of both true composites and factors, in two stages, fully accounting for measurement error. Our discussion is based on an illustrative model in the field of e-collaboration.AMonte Carlo experiment suggests thatmodel parameters generated by the method are asymptotically unbiased. The method is implemented as part of the software WarpPLS, starting in version 5.0. This chapter provides enough details for the method’s implementation in other venues such as R and GNU Octave

    Microsatellite analysis reveals genetic differentiation between year-classes in the icefish Chaenocephalus aceratus at South Shetlands and Elephant Island

    No full text
    Chaenocephalus aceratus is one of the most abundant Antarctic icefish species in the Atlantic sector and has been a by-catch species in the fishery for mackerel icefish, Champsocephalus gunnari, between the mid-1970s and mid-1980s at South Georgia, South Orkney, and South Shetland Islands. The species became the target of the fishery in particular seasons, such as at South Georgia in 1977/78. In our paper, we report results on genetic differentiation for 11 microsatellite loci in C. aceratus samples collected at the South Shetlands and Elephant Island. This study represents the first report on microsatellite variability of an icefish species. Our results support the evidence from previous studies on differences in infestation patterns of parasites that a single panmictic population of C. aceratus exists, spanning the two sampling sites separated by about 100 km. Moreover, our study indicates the presence of a significant genetic differentiation between individual year-classes pointing out the existence of dynamic processes acting at the population genetic level, according to recent results for broadly distributed marine species. Both small effective population size and immigration from unsampled differentiated stocks may be at the base of the differentiation found in C. aceratus
    • …
    corecore