83 research outputs found

    Mean-Motion Resonances of High Order in Extrasolar Planetary Systems

    Full text link
    Many multi-planet systems have been discovered in recent years. Some of them are in mean-motion resonances (MMR). Planet formation theory was successful in explaining the formation of 2:1, 3:1 and other low resonances as a result of convergent migration. However, higher order resonances require high initial orbital eccentricities in order to be formed by this process and these are in general unexpected in a dissipative disk. We present a way of generating large initial eccentricities using additional planets. This procedure allows us to form high order MMRs and predict new planets using a genetic N-body code.Comment: To appear in Proceedings: Extrasolar Planets in Multi-body Systems: Theory and Observations; Editors K. Gozdziewski, A. Niedzielski and J. Schneider; 5 pages, 2 figures

    Connecting the Holographic and Wilsonian Renormalization Groups

    Full text link
    Inspired by the AdS/CFT correspondence, we develop an explicit formal duality between the planar limit of a d-dimensional gauge theory and a classical field theory in a (d+1)-dimensional anti-de Sitter space. The key ingredient is the identification of fields in AdS with generalized Hubbard-Stratonovich transforms of single-trace couplings of the QFT. We show that the Wilsonian renormalization group flow of these transformed couplings matches the holographic (Hamilton-Jacobi) flow of bulk fields along the radial direction in AdS. This result allows one to outline an AdS/CFT dictionary that does not rely on string theory.Comment: 11 pages, 1 figure; metadata modified in v2; added references and minor changes in v3; v4 as published in JHE

    Mindfulness based interventions in multiple sclerosis: a systematic review

    Get PDF
    <b>Background</b> Multiple sclerosis (MS) is a stressful condition; depression, anxiety, pain and fatigue are all common problems. Mindfulness based interventions (MBIs) mitigate stress and prevent relapse in depression and are increasingly being used in healthcare. However, there are currently no systematic reviews of MBIs in people with MS. This review aims to evaluate the effectiveness of MBIs in people with MS.<p></p> <b>Methods</b> Systematic searches were carried out in seven major databases, using both subject headings and key words. Papers were screened, data extracted, quality appraised, and analysed by two reviewers independently, using predefined criteria. Study quality was assessed using the Cochrane Collaboration risk of bias tool. Perceived stress was the primary outcome. Secondary outcomes include mental health, physical health, quality of life, and health service utilisation. Statistical meta-analysis was not possible. Disagreements were adjudicated by a third party reviewer.<p></p> <b>Results</b> Three studies (n = 183 participants) were included in the final analysis. The studies were undertaken in Wales (n = 16, randomised controlled trial - (RCT)), Switzerland (n = 150, RCT), and the United States (n = 17, controlled trial). 146 (80%) participants were female; mean age (SD) was 48.6 (9.4) years. Relapsing remitting MS was the main diagnostic category (n = 123, 67%); 43 (26%) had secondary progressive disease; and the remainder were unspecified. MBIs lasted 6–8 weeks; attrition rates were variable (5-43%); all employed pre- post- measures; two had longer follow up; one at 3, and one at 6 months. Socio-economic status of participants was not made explicit; health service utilisation and costs were not reported. No study reported on perceived stress. All studies reported quality of life (QOL), mental health (anxiety and depression), physical (fatigue, standing balance, pain), and psychosocial measures. Statistically significant beneficial effects relating to QOL, mental health, and selected physical health measures were sustained at 3- and 6- month follow up.<p></p> <b>Conclusion</b> From the limited data available, MBIs may benefit some MS patients in terms of QOL, mental health, and some physical health measures. Further studies are needed to clarify how MBIs might best serve the MS population.<p></p&gt

    Phase Structure and Compactness

    Get PDF
    In order to study the influence of compactness on low-energy properties, we compare the phase structures of the compact and non-compact two-dimensional multi-frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and non-compact models coincides, but their low-energy behaviors differ. The critical frequency β2=8π\beta^2 = 8\pi at which the sine-Gordon model undergoes a topological phase transition is found to be unaffected by the compactness of the field since it is determined by high-energy scaling laws. However, the compact two-frequency sine-Gordon model has first and second order phase transitions determined by the low-energy scaling: we show that these are absent in the non-compact model.Comment: 21 pages, 5 figures, minor changes, final version, accepted for publication in JHE

    Rotation Curves of Spiral Galaxies

    Get PDF
    Rotation curves of spiral galaxies are the major tool for determining the distribution of mass in spiral galaxies. They provide fundamental information for understanding the dynamics, evolution and formation of spiral galaxies. We describe various methods to derive rotation curves, and review the results obtained. We discuss the basic characteristics of observed rotation curves in relation to various galaxy properties, such as Hubble type, structure, activity, and environment.Comment: 40 pages, 6 gif figures; Ann. Rev. Astron. Astrophys. Vol. 39, p.137, 200

    Conjectures on exact solution of three - dimensional (3D) simple orthorhombic Ising lattices

    Full text link
    We report the conjectures on the three-dimensional (3D) Ising model on simple orthorhombic lattices, together with the details of calculations for a putative exact solution. Two conjectures, an additional rotation in the fourth curled-up dimension and the weight factors on the eigenvectors, are proposed to serve as a boundary condition to deal with the topologic problem of the 3D Ising model. The partition function of the 3D simple orthorhombic Ising model is evaluated by spinor analysis, by employing these conjectures. Based on the validity of the conjectures, the critical temperature of the simple orthorhombic Ising lattices could be determined by the relation of KK* = KK' + KK'' + K'K'' or sinh 2K sinh 2(K' + K'' + K'K''/K) = 1. For a simple cubic Ising lattice, the critical point is putatively determined to locate exactly at the golden ratio xc = exp(-2Kc) = (sq(5) - 1)/2, as derived from K* = 3K or sinh 2K sinh 6K = 1. If the conjectures would be true, the specific heat of the simple orthorhombic Ising system would show a logarithmic singularity at the critical point of the phase transition. The spontaneous magnetization and the spin correlation functions of the simple orthorhombic Ising ferromagnet are derived explicitly. The putative critical exponents derived explicitly for the simple orthorhombic Ising lattices are alpha = 0, beta = 3/8, gamma = 5/4, delta = 13/3, eta = 1/8 and nu = 2/3, showing the universality behavior and satisfying the scaling laws. The cooperative phenomena near the critical point are studied and the results obtained based on the conjectures are compared with those of the approximation methods and the experimental findings. The 3D to 2D crossover phenomenon differs with the 2D to 1D crossover phenomenon and there is a gradual crossover of the exponents from the 3D values to the 2D ones.Comment: 176 pages, 4 figure

    Truncation Effects in the Functional Renormalization Group Study of Spontaneous Symmetry Breaking

    Get PDF
    We study the occurrence of spontaneous symmetry breaking (SSB) for O (N) models using functional renormalization group techniques. We show that even the local potential approximation (LPA) when treated exactly is sufficient to give qualitatively correct results for systems with continuous symmetry, in agreement with the Mermin-Wagner theorem and its extension to systems with fractional dimensions. For general N (including the Ising model N = 1) we study the solutions of the LPA equations for various truncations around the zero field using a finite number of terms (and different regulators), showing that SSB always occurs even where it should not. The SSB is signalled by Wilson-Fisher fixed points which for any truncation are shown to stay on the line defined by vanishing mass beta functions

    The expansion field: The value of H_0

    Full text link
    Any calibration of the present value of the Hubble constant requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4-30 Mpc is crucial. A list of 279 such galaxy distances within v<2000 km/s is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins from v=250 to at least 2000 km/s. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km/s. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km/s but increasing outwards. Due to the linearity of the expansion field the Hubble constant H_0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H_0=63.0+/-1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H_0=63.4+/-1.7 at 15 Mpc. This agrees also with the large-scale value of H_0=61.2+/-0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H_0=62.3+/-1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Typical errors of H_0 come from the use of a universal, yet unjustified P-L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.Comment: 44 pages, 4 figures, 6 tables, accepted for publication in the Astronony and Astrophysics Review 15
    corecore