284 research outputs found

    Interplay of quantum and classical fluctuations near quantum critical points

    Full text link
    For a system near a quantum critical point (QCP), above its lower critical dimension dLd_L, there is in general a critical line of second order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, deff=d+zd_{eff}=d+z (dd is the Euclidean dimension of the system and zz the dynamic quantum critical exponent) is above its upper critical dimension dCd_C, there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ=νz\psi=\nu z between the shift exponent ψ\psi of the critical line and the crossover exponent νz\nu z, for d+z>dCd+z>d_C by a \textit{dangerous irrelevant interaction}. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP.Comment: 10 pages, 6 figures, to be published in Brazilian Journal of Physic

    Combinations of newly confirmed Glioma-Associated loci link regions on chromosomes 1 and 9 to increased disease risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma multiforme (GBM) tends to occur between the ages of 45 and 70. This relatively early onset and its poor prognosis make the impact of GBM on public health far greater than would be suggested by its relatively low frequency. Tissue and blood samples have now been collected for a number of populations, and predisposing alleles have been sought by several different genome-wide association (GWA) studies. The Cancer Genome Atlas (TCGA) at NIH has also collected a considerable amount of data. Because of the low concordance between the results obtained using different populations, only 14 predisposing single nucleotide polymorphism (SNP) candidates in five genomic regions have been replicated in two or more studies. The purpose of this paper is to present an improved approach to biomarker identification.</p> <p>Methods</p> <p>Association analysis was performed with control of population stratifications using the EIGENSTRAT package, under the null hypothesis of "no association between GBM and control SNP genotypes," based on an additive inheritance model. Genes that are strongly correlated with identified SNPs were determined by linkage disequilibrium (LD) or expression quantitative trait locus (eQTL) analysis. A new approach that combines meta-analysis and pathway enrichment analysis identified additional genes.</p> <p>Results</p> <p>(i) A meta-analysis of SNP data from TCGA and the Adult Glioma Study identifies 12 predisposing SNP candidates, seven of which are reported for the first time. These SNPs fall in five genomic regions (5p15.33, 9p21.3, 1p21.2, 3q26.2 and 7p15.3), three of which have not been previously reported. (ii) 25 genes are strongly correlated with these 12 SNPs, eight of which are known to be cancer-associated. (iii) The relative risk for GBM is highest for risk allele combinations on chromosomes 1 and 9. (iv) A combined meta-analysis/pathway analysis identified an additional four genes. All of these have been identified as cancer-related, but have not been previously associated with glioma. (v) Some SNPs that do not occur reproducibly across populations are in reproducible (invariant) pathways, suggesting that they affect the same biological process, and that population discordance can be partially resolved by evaluating processes rather than genes.</p> <p>Conclusion</p> <p>We have uncovered 29 glioma-associated gene candidates; 12 of them known to be cancer related (<it>p </it>= 1. 4 × 10<sup>-6</sup>), providing additional statistical support for the relevance of the new candidates. This additional information on risk loci is potentially important for identifying Caucasian individuals at risk for glioma, and for assessing relative risk.</p

    Presence of genes for type III secretion system 2 in Vibrio mimicus strains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vibrios, which include more than 100 species, are ubiquitous in marine and estuarine environments, and several of them e.g. <it>Vibrio cholerae</it>, <it>V. parahaemolyticus</it>, <it>V. vulnificus </it>and <it>V. mimicus</it>, are pathogens for humans. Pathogenic <it>V. parahaemolyticus </it>strains possess two sets of genes for type III secretion system (T3SS), T3SS1 and T3SS2. The latter are critical for virulence of the organism and be classified into two distinct phylogroups, T3SS2α and T3SS2β, which are reportedly also found in pathogenic <it>V. cholerae </it>non-O1/non-O139 serogroup strains. However, whether T3SS2-related genes are present in other <it>Vibrio </it>species remains unclear.</p> <p>Results</p> <p>We therefore examined the distribution of the genes for T3SS2 in vibrios other than <it>V. parahaemolyticus </it>by using a PCR assay targeting both T3SS2α and T3SS2β genes. Among the 32 <it>Vibrio </it>species tested in our study, several T3SS2-related genes were detected in three species, <it>V. cholerae</it>, <it>V. mimicus </it>and <it>V. hollisae</it>, and most of the essential genes for type III secretion were present in T3SS2-positive <it>V. cholerae </it>and <it>V. mimicus </it>strains. Moreover, both <it>V. mimicus </it>strains possessing T3SS2α and T3SS2β were identified. The gene organization of the T3SS2 gene clusters in <it>V. mimicus </it>strains was fundamentally similar to that of <it>V. parahaemolyticus </it>and <it>V. cholerae </it>in both T3SS2α- and T3SS2β-possessing strains.</p> <p>Conclusions</p> <p>This study is the first reported evidence of the presence of T3SS2 gene clusters in <it>V. mimicus </it>strains. This finding thus provides a new insight into the pathogenicity of the <it>V. mimicus </it>species.</p

    Smoking Dose Modifies the Association between C242T Polymorphism and Prevalence of Metabolic Syndrome in a Chinese Population

    Get PDF
    Background: The C242T polymorphism of the CYBA gene that encodes p22phox, a component of NADPH oxidase, has been found to modulate superoxide production. Oxidase is a major source of the superoxide anion that contributes to individual components of metabolic syndrome. We examined the relationship of the C242T polymorphism with the prevalence of metabolic syndrome in a Chinese population, taking account of consumed cigarette amounts. Methodology/Principal Findings: In 870 participants, we collected biomarkers related to metabolic syndrome and detailed history of smoking and genotyped the C242T polymorphisms. After adjustment for covariates, the CT/TT genotypes were associated with a lower risk of metabolic syndrome (P = 0.0008). The odds of having metabolic syndrome in the CT/TT participants were 0.439 (95%CI: 0.265, 0.726), while for CC participants the odds were 1.110 (95%CI: 0.904, 1.362). There was significant (P = 0.014) interaction between the C242T polymorphism and smoking status in relation to the prevalence of metabolic syndrome. For smokers who smoke no less than 25 pack-years, those with CT/TT genotypes had lower risk of metabolic syndrome as compared with CC polymorphism carriers (P = 0.015). In the multiple regression analysis, the CT/TT genotypes were significantly associated with lower serum concentration of triglycerides both in all subjects and smokers; furthermore, the CT/TT genotypes were also related to smaller waist circumference in smokers. Conclusions: Our study suggests that the C242T gene polymorphism is indeed related to the prevalence of metaboli

    The VICI-trial: high frequency oscillation versus conventional mechanical ventilation in newborns with congenital diaphragmatic hernia: an international multicentre randomized controlled trial

    Get PDF
    Background: Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly of the diaphragm resulting in pulmonary hypoplasia and pulmonary hypertension. It is associated with a high risk of mortality and pulmonary morbidity. Previous retrospective studies have reported high frequency oscillatory ventilation (HFO) to reduce pulmonary morbidity in infants with CDH, while others indicated HFO to be associated with worse outcome. We therefore aimed to develop a randomized controlled trial to compare initial ventilatory treatment with high-frequency oscillation and conventional ventilation in infants with CDH.Methods/design: This trial is designed as a multicentre trial in which 400 infants (200 in each arm) will be included. Primary outcome measures are BPD, described as oxygen dependency by day 28 according to the definition of Jobe and Bancalari, and/or mortality by day 28. All liveborn infants with CDH born at a gestational age of over 34 weeks and no other severe congenital anomalies are eligible for inclusion. Parental informed consent is asked antenatally and the allocated ventilation mode starts within two hours after birth. Laboratory samples of blood, urine and tracheal aspirate are taken at the first day of life, day 3, day 7, day 14 and day 28 to evaluate laboratory markers for ventilator-induced lung injury and pulmonary hypertension.Discussion: To date, randomized clinical trials are lacking in the field of CDH. The VICI-trial, as the first randomized clinical trial in the field of CDH, may provide further insight in ventilation strategies in CDH patient. This may hopefully prevent mortality and morbidity.Trial registration: Netherlands Trial Register (NTR): NTR1310

    Carbohydrate hydrogels with stabilized phage particles for bacterial biosensing: bacterium diffusion studies

    Get PDF
    Bacteriophage particles have been reported as potentially useful in the development of diagnosis tools for pathogenic bacteria as they specifically recognize and lyse bacterial isolates thus confirming the presence of viable cells. One of the most representative microorganisms associated with health care services is the bacterium Pseudomonas aeruginosa, which alone is responsible for nearly 15 % of all nosocomial infections. In this context, structural and functional stabilization of phage particles within biopolymeric hydrogels, aiming at producing cheap (chromogenic) bacterial biosensing devices, has been the goal of a previous research effort. For this, a detailed knowledge of the bacterial diffusion profile into the hydrogel core, where the phage particles lie, is of utmost importance. In the present research effort, the bacterial diffusion process into the biopolymeric hydrogel core was mathematically described and the theoretical simulations duly compared with experimental results, allowing determination of the effective diffusion coefficients of P. aeruginosa in the agar and calcium alginate hydrogels tested.Financial support to Victor M. Balcao, via an Invited Research Scientist fellowship (FAPESP Ref. No. 2011/51077-8) by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Sao Paulo, Brazil), is hereby gratefully acknowledged

    Perceptions of Problem Behavior in Adolescents’ Families: Perceiver, Target, and Family Effects

    Get PDF
    Considerable research has focused on the reliability and validity of informant reports of family behavior, especially maternal reports of adolescent problem behavior. None of these studies, however, has based their orientation on a theoretical model of interpersonal perception. In this study we used the social relations model (SRM) to examine family members’ reports of each others’ externalizing and internalizing problem behavior. Two parents and two adolescents in 69 families rated each others’ behavior within a round-robin design. SRM analysis showed that within-family perceptions of externalizing and internalizing behaviors are consistently due to three sources of variance; perceiver, target, and family effects. A family/contextual effect on informant reports of problem behavior has not been previously reported

    Dynamic thoracohumeral kinematics are dependent upon the etiology of the shoulder injury

    Full text link
    [EN] Obtaining kinematic patterns that depend on the shoulder injury may be important when planning rehabilitation. The main goal of this study is to explore whether the kinematic patterns of continuous and repetitive shoulder elevation motions are different according to the type of shoulder injury in question, specifically tendinopathy or rotator cuff tear, and to analyze the influence of the load handled during its assessment. For this purpose, 19 individuals with tendinopathy and 9 with rotator cuff tear performed a repetitive scaption movement that was assessed with stereophotogrammetry. Furthermore, static range of motion (ROM) and isometric strength were evaluated with a goniometer and a dynamometer, respectively. Dynamic measurements of maximum elevation (Emax), variablility of the maximum angle (VMA), maximum angular velocity (Velmax), and time to maximum velocity (tmaxvel) were found to be significantly different between the tendinopathy group (TG) and the rotator cuff tear group (RTCG). No differences were found in the ROM assessed with goniometry and the isometric strength. The effect of increasing the load placed in the hand during the scaption movement led to significant differences in Emax, VMA, tmaxvel and repeatability. Therefore, only the dynamic variables showed sufficient capability of detecting differences in functional performance associated with structural shoulder injury. The differences observed in the kinematic variables between patients with tendinopathy and rotator cuff tear seem to be related to alterations in thoracohumeral rhythm and neuromuscular control. Kinematic analysis may contribute to a better understanding of the functional impact of shoulder injuries, which would help in the assessment and treatment of shoulder pain.This work was funded by the Spanish Government, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, and co-financed by EU FEDER funds (Grant DPI2013-44227-R). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Lopez Pascual, J.; Page Del Pozo, AF.; Serra Añó, P. (2017). Dynamic thoracohumeral kinematics are dependent upon the etiology of the shoulder injury. PLoS ONE. 12(8). https://doi.org/10.1371/journal.pone.0183954S12

    A Threshold Equation for Action Potential Initiation

    Get PDF
    In central neurons, the threshold for spike initiation can depend on the stimulus and varies between cells and between recording sites in a given cell, but it is unclear what mechanisms underlie this variability. Properties of ionic channels are likely to play a role in threshold modulation. We examined in models the influence of Na channel activation, inactivation, slow voltage-gated channels and synaptic conductances on spike threshold. We propose a threshold equation which quantifies the contribution of all these mechanisms. It provides an instantaneous time-varying value of the threshold, which applies to neurons with fluctuating inputs. We deduce a differential equation for the threshold, similar to the equations of gating variables in the Hodgkin-Huxley formalism, which describes how the spike threshold varies with the membrane potential, depending on channel properties. We find that spike threshold depends logarithmically on Na channel density, and that Na channel inactivation and K channels can dynamically modulate it in an adaptive way: the threshold increases with membrane potential and after every action potential. Our equation was validated with simulations of a previously published multicompartemental model of spike initiation. Finally, we observed that threshold variability in models depends crucially on the shape of the Na activation function near spike initiation (about −55 mV), while its parameters are adjusted near half-activation voltage (about −30 mV), which might explain why many models exhibit little threshold variability, contrary to experimental observations. We conclude that ionic channels can account for large variations in spike threshold

    Predicting Spatial Patterns of Plant Recruitment Using Animal-Displacement Kernels

    Get PDF
    For plants dispersed by frugivores, spatial patterns of recruitment are primarily influenced by the spatial arrangement and characteristics of parent plants, the digestive characteristics, feeding behaviour and movement patterns of animal dispersers, and the structure of the habitat matrix. We used an individual-based, spatially-explicit framework to characterize seed dispersal and seedling fate in an endangered, insular plant-disperser system: the endemic shrub Daphne rodriguezii and its exclusive disperser, the endemic lizard Podarcis lilfordi. Plant recruitment kernels were chiefly determined by the disperser's patterns of space utilization (i.e. the lizard's displacement kernels), the position of the various plant individuals in relation to them, and habitat structure (vegetation cover vs. bare soil). In contrast to our expectations, seed gut-passage rate and its effects on germination, and lizard speed-of-movement, habitat choice and activity rhythm were of minor importance. Predicted plant recruitment kernels were strongly anisotropic and fine-grained, preventing their description using one-dimensional, frequency-distance curves. We found a general trade-off between recruitment probability and dispersal distance; however, optimal recruitment sites were not necessarily associated to sites of maximal adult-plant density. Conservation efforts aimed at enhancing the regeneration of endangered plant-disperser systems may gain in efficacy by manipulating the spatial distribution of dispersers (e.g. through the creation of refuges and feeding sites) to create areas favourable to plant recruitment
    corecore