221 research outputs found

    Self-gravity as an explanation of the fractal structure of the interstellar medium

    Get PDF
    The gas clouds of the interstellar medium have a fractal structure, the origin of which has generally been thought to lie in turbulence. The energy of turbulence could come from galactic rotation at large-scale, then cascade down to be dissipated on small-scales by viscosity; it has been suggested that such turbulence helps to prevent massive molecular clouds from collapsing in response to their own gravity. Here we show that, on the contrary, self-gravity itself may be the dominant factor in making clouds fractal. We develop a field-theory approach to the structure of clouds, assuming them to be isothermal, and with only gravitational interactions; we find that the observed fractal dimension of the clouds arise naturally from this approach. Although this result does not imply that turbulence is not important, it does demonstrate that the fractal structure can be understood without it.Comment: Latex file, four pages and two colour figures in .cps files. To appear in Nature, 5 September 199

    Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group

    Full text link
    The Hierarchical Reference Theory (HRT) of fluids is a general framework for the description of phase transitions in microscopic models of classical and quantum statistical physics. The foundations of HRT are briefly reviewed in a self-consistent formulation which includes both the original sharp cut-off procedure and the smooth cut-off implementation, which has been recently investigated. The critical properties of HRT are summarized, together with the behavior of the theory at first order phase transitions. However, the emphasis of this presentation is on the close relationship between HRT and non perturbative renormalization group methods, as well as on recent generalizations of HRT to microscopic models of interest in soft matter and quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic

    Fractal Dimensions and Scaling Laws in the Interstellar Medium and Galaxy Distributions: a new Field Theory Approach

    Get PDF
    We develop a field theoretical approach to the cold interstellar medium (ISM) and large structure of the universe. We show that a non-relativistic self- gravitating gas in thermal equilibrium with variable number of atoms or fragments is exactly equivalent to a field theory of a scalar field phi(x) with exponential self-interaction. We analyze this field theory perturbatively and non-perturbatively through the renormalization group(RG).We show scaling behaviour (critical) for a continuous range of the physical parameters as the temperature. We derive in this framework the scaling relation M(R) \sim R^{d_H} for the mass on a region of size R, and Delta v \sim R^\frac12(d_H -1) for the velocity dispersion. For the density-density correlations we find a power-law behaviour for large distances \sim |r_1 - r_2|^{2D - 6}.The fractal dimension D turns to be related with the critical exponent \nu by D = 1/ \nu. Mean field theory yields \nu = 1/2, D = 2. Both the Ising and the mean field values are compatible with the present ISM observational data:1.4\leq D \leq 2. We develop a field theoretical approach to the galaxy distribution considering a gas of self-gravitating masses on the FRW background, in quasi-thermal equi- librium. We show that it exhibits scaling behaviour by RG methods. The galaxy correlations are computed without assuming homogeneity. We find \sim r^{D-3} .Thetheoryallowstocomputethethreeandhigherdensitycorrelatorswithoutanyassumption.WefindthattheconnectedNpointsdensityscalesasr1N(D3),when. The theory allows to compute the three and higher density correlators without any assumption.We find that the connected N-points density scales as r_1^{N(D-3)}, when r_1 >> r_i

    Phosphoproteomic Profiling of In Vivo Signaling in Liver by the Mammalian Target of Rapamycin Complex 1 (mTORC1)

    Get PDF
    Our understanding of signal transduction networks in the physiological context of an organism remains limited, partly due to the technical challenge of identifying serine/threonine phosphorylated peptides from complex tissue samples. In the present study, we focused on signaling through the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which is at the center of a nutrient- and growth factor-responsive cell signaling network. Though studied extensively, the mechanisms involved in many mTORC1 biological functions remain poorly understood.We developed a phosphoproteomic strategy to purify, enrich and identify phosphopeptides from rat liver homogenates. Using the anticancer drug rapamycin, the only known target of which is mTORC1, we characterized signaling in liver from rats in which the complex was maximally activated by refeeding following 48 hr of starvation. Using protein and peptide fractionation methods, TiO(2) affinity purification of phosphopeptides and mass spectrometry, we reproducibly identified and quantified over four thousand phosphopeptides. Along with 5 known rapamycin-sensitive phosphorylation events, we identified 62 new rapamycin-responsive candidate phosphorylation sites. Among these were PRAS40, gephyrin, and AMP kinase 2. We observed similar proportions of increased and reduced phosphorylation in response to rapamycin. Gene ontology analysis revealed over-representation of mTOR pathway components among rapamycin-sensitive phosphopeptide candidates.In addition to identifying potential new mTORC1-mediated phosphorylation events, and providing information relevant to the biology of this signaling network, our experimental and analytical approaches indicate the feasibility of large-scale phosphoproteomic profiling of tissue samples to study physiological signaling events in vivo

    Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case

    Get PDF
    Background:In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey) occupy crucial positions. Resolving molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates) genes is indispensable in deciphering both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes, have produced highly discordant results between gene families. To efficiently scrutinize this problem using partial genome assemblies of early vertebrates, we focused on the potassium voltage-gated channel, shaker-related (KCNA) family, whose members are mostly single-exon.Results:Seven sea lamprey KCNA genes as well as six elephant shark genes were identified, and their orthologies to bony vertebrate subgroups were assessed. In contrast to robustly supported orthology of the elephant shark genes to gnathostome subgroups, clear orthology of any sea lamprey gene could not be established. Notably, sea lamprey KCNA sequences displayed unique codon usage pattern and amino acid composition, probably associated with exceptionally high GC-content in their coding regions. This lamprey-specific property of coding sequences was also observed generally for genes outside this gene family.Conclusions:Our results suggest that secondary modifications of sequence properties unique to the lamprey lineage may be one of the factors preventing robust orthology assessments of lamprey genes, which deserves further genome-wide validation. The lamprey lineage-specific alteration of protein-coding sequence properties needs to be taken into consideration in tackling the key questions about early vertebrate evolution

    Positive Youth Development, Life Satisfaction and Problem Behaviour Among Chinese Adolescents in Hong Kong: A Replication

    Get PDF
    The purpose of this replication study was to examine the relationships among life satisfaction, positive youth development and problem behaviour. The respondents were 7,151 Chinese Secondary 2 (Grade 8) students (3,707 boys and 3,014 girls) recruited from 44 schools in Hong Kong. Validated assessment tools measuring positive youth development, life satisfaction and problem behaviour were used. As predicted, positive youth development was positively correlated with life satisfaction, and positive youth development and life satisfaction were negatively correlated with adolescent problem behaviour. Based on a series of structural equation models, the present findings replicated the previous findings that adolescents with a higher level of positive youth development were more satisfied with life and had lesser problem behaviour, with higher level of life satisfaction and lower level of problem behaviour mutually influencing each other. These replicated findings provide a further advance in the literature on positive youth development, particularly in the Chinese context. Implications for future research and intervention were discussed

    Supply chain sustainability performance measurement of small and medium sized enterprises using structural equation modeling

    Get PDF
    Sustainability of small and medium sized enterprises (SMEs) is significant as SMEs contribute to GDP substantially in every economy. This research develops an innovative sustainable supply chain performance measurement model for SMEs. Prior researches predominantly use balanced score card (BSC) approach that presume causal relationship of criteria and Data Envelopment Analysis (DEA), which derive efficiency of units from a few input and output criteria. While DEA is effective for policymakers, BSC is more suitable for individual SME. The proposed method that uses structural equation modeling (SEM) approach to derive the relationship of criteria and criteria weights formulates regression-type models for a specific region as well as for specific SME. The SEM-based supply chain sustainability performance measurement model is beneficial to policymakers as they can determine means for improvement at a regional level. The proposed method could also facilitate managers/owners of individual SMEs with measures for improving their supply chain sustainability performance. The method has been applied to three varied geographical locations in the UK, France and India in order to demonstrate its effectiveness

    Auxin Response Factor2 (ARF2) and Its Regulated Homeodomain Gene HB33 Mediate Abscisic Acid Response in Arabidopsis

    Get PDF
    The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth
    corecore