113 research outputs found

    Changes in Plant Species Richness Induce Functional Shifts in Soil Nematode Communities in Experimental Grassland

    Get PDF
    Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions

    First and second eye cataract surgery and driver self-regulation among older drivers with bilateral cataract: A prospective cohort study

    Get PDF
    Background: Driving a car is the most common form of transport among the older population. Common medical conditions such as cataract, increase with age and impact on the ability to drive. To compensate for visual decline, some cataract patients may self-regulate their driving while waiting for cataract surgery. However, little is known about the self-regulation practices of older drivers throughout the cataract surgery process. The aim of this study is to assess the impact of first and second eye cataract surgery on driver self-regulation practices, and to determine which objective measures of vision are associated with driver self-regulation. Methods: Fifty-five older drivers with bilateral cataract aged 55+ years were assessed using the self-reported Driving Habits Questionnaire, the Mini-Mental State Examination and three objective visual measures in the month before cataract surgery, at least one to three months after first eye cataract surgery and at least one month after second eye cataract surgery. Participants' natural driving behaviour in four driving situations was also examined for one week using an in-vehicle monitoring device. Two separate Generalised Estimating Equation logistic models were undertaken to assess the impact of first and second eye cataract surgery on driver-self-regulation status and which changes in visual measures were associated with driver self-regulation status. Results: The odds of being a self-regulator in at least one driving situation significantly decreased by 70% after first eye cataract surgery (OR: 0.3, 95% CI: 0.1-0.7) and by 90% after second eye surgery (OR: 0.1, 95% CI: 0.1-0.4), compared to before first eye surgery. Improvement in contrast sensitivity after cataract surgery was significantly associated with decreased odds of self-regulation (OR: 0.02, 95% CI: 0.01-0.4). Conclusions: The findings provide a strong rationale for providing timely first and second eye cataract surgery for older drivers with bilateral cataract, in order to improve their mobility and independence

    A proposed systems approach to the evaluation of integrated palliative care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing global interest in regional palliative care networks (PCN) to integrate care, creating systems that are more cost-effective and responsive in multi-agency settings. Networks are particularly relevant where different professional skill sets are required to serve the broad spectrum of end-of-life needs. We propose a comprehensive framework for evaluating PCNs, focusing on the nature and extent of inter-professional collaboration, community readiness, and client-centred care.</p> <p>Methods</p> <p>In the absence of an overarching structure for examining PCNs, a framework was developed based on previous models of health system evaluation, explicit theory, and the research literature relevant to PCN functioning. This research evidence was used to substantiate the choice of model factors.</p> <p>Results</p> <p>The proposed framework takes a systems approach with system structure, process of care, and patient outcomes levels of consideration. Each factor represented makes an independent contribution to the description and assessment of the network.</p> <p>Conclusions</p> <p>Realizing palliative patients' needs for complex packages of treatment and social support, in a seamless, cost-effective manner, are major drivers of the impetus for network-integrated care. The framework proposed is a first step to guide evaluation to inform the development of appropriate strategies to further promote collaboration within the PCN and, ultimately, optimal palliative care that meets patients' needs and expectations.</p

    Contrasted Patterns of Molecular Evolution in Dominant and Recessive Self-Incompatibility Haplotypes in Arabidopsis

    Get PDF
    Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders

    Full text link
    Psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder are often accompanied by metabolic dysfunction symptoms, including obesity and diabetes. Since the circadian system controls important brain systems that regulate affective, cognitive, and metabolic functions, and neuropsychiatric and metabolic diseases are often correlated with disturbances of circadian rhythms, we hypothesize that dysregulation of circadian clocks plays a central role in metabolic comorbidity in psychiatric disorders. In this review paper, we highlight the role of circadian clocks in glucocorticoid, dopamine, and orexin/melanin-concentrating hormone systems and describe how a dysfunction of these clocks may contribute to the simultaneous development of psychiatric and metabolic symptoms
    corecore