98 research outputs found

    State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime

    Full text link
    Recently, macroscopic mechanical oscillators have been coaxed into a regime of quantum behavior, by direct refrigeration [1] or a combination of refrigeration and laser-like cooling [2, 3]. This exciting result has encouraged notions that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits [1, 4-7], either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode of a microwave field to and from a mechanical oscillator has not been demonstrated owing to the inability to agilely turn on and off the interaction between microwave electricity and mechanical motion. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in, and retrieved from a mechanical oscillator with amplitudes at the single quanta level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store and transduce quantum information

    Investigating the purpose of an online discussion group for health professionals: a case example from forensic occupational therapy

    Get PDF
    Background: Thousands of health-related online discussion groups are active world-wide however, very little is known about the purpose and usefulness of such groups. In 2003 an online discussion group called ‘forensic occupational therapy' was established in the United Kingdom. This group was examined to gain an understanding of the purpose and use of online discussion groups for health professionals who may be practically and geographically isolated from others in similar areas of practice. Methods: Following a case study design, descriptive characteristics on members' locations and number of posts were collected from the forensic occupational therapy online discussion group. Eight years of posts (2003-2011) were examined using a theoretical thematic analysis process to identify and describe the purposes for which members were using the group. Results: Members from 20 countries contributed to the discussion group; the vast majority of posts being from members in the United Kingdom. Activity within the group was consistently high for the first five years however, activity within the group declined in the final three years. Six purposes for which members use the online discussion group were identified: seeking and giving advice, networking, requesting and sharing material resources, service development, defining the role of occupational therapists, and student learning. Conclusions: Findings suggest that health professionals in specialized and often isolated areas of practice are keen to connect with colleagues and learn from each other's experiences. The main purposes for which the online discussion group was used could be summarized as communication, information sharing and networking; though activity within the group declined significantly during the last three years of the data collection period. This raises questions about the sustainability of online discussion groups within the rapidly developing social media environment

    Unemployment by Gender: Evidence from EU Countries

    Get PDF
    This paper applies panel unit-root tests that allow for structural breaks and cross-sectional dependence to examine the validity of hysteresis in gender unemployment rates and gender unemployment gap for a panel of 15 European countries. Addressing breaks, there is evidence to reject the null hypothesis of hysteresis for the unemployment rates and unemployment gap series. Allowing for both cross-sectional dependence and heterogeneous structural breaks this result is reverted and we fail to reject the null hypothesis of unit root

    MR imaging in sports-related glenohumeral instability

    Get PDF
    Sports-related shoulder pain and injuries represent a common problem. In this context, glenohumeral instability is currently believed to play a central role either as a recognized or as an unrecognized condition. Shoulder instabilities can roughly be divided into traumatic, atraumatic, and microtraumatic glenohumeral instabilities. In athletes, atraumatic and microtraumatic instabilities can lead to secondary impingement syndromes and chronic damage to intraarticular structures. Magnetic resonance (MR) arthrography is superior to conventional MR imaging in the diagnosis of labro-ligamentous injuries, intrinsic impingement, and SLAP (superior labral anteroposterior) lesions, and thus represents the most informative imaging modality in the overall assessment of glenohumeral instability. This article reviews the imaging criteria for the detection and classification of instability-related injuries in athletes with special emphasis on the influence of MR findings on therapeutic decisions

    The elegans of spindle assembly

    Get PDF
    The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly

    Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum

    Get PDF
    Background: Many species belonging to the genus Colletotrichum cause anthracnose disease on a wide range of plant species. In addition to their economic impact, the genus Colletotrichum is a useful model for the study of the evolution of host specificity, speciation and reproductive behaviors. Genome projects of Colletotrichum species have already opened a new era for studying the evolution of pathogenesis in fungi. Results: We sequenced and annotated the genomes of four strains in the Colletotrichum acutatum species complex (CAsc), a clade of broad host range pathogens within the genus. The four CAsc proteomes and secretomes along with those representing an additional 13 species (six Colletotrichum spp. and seven other Sordariomycetes) were classified into protein families using a variety of tools. Hierarchical clustering of gene family and functional domain assignments, and phylogenetic analyses revealed lineage specific losses of carbohydrate-active enzymes (CAZymes) and proteases encoding genes in Colletotrichum species that have narrow host range as well as duplications of these families in the CAsc. We also found a lineage specific expansion of necrosis and ethylene-inducing peptide 1 (Nep1)-like protein (NLPs) families within the CAsc. Conclusions: This study illustrates the plasticity of Colletotrichum genomes, and shows that major changes in host range are associated with relatively recent changes in gene content

    Genetic determinants of daytime napping and effects on cardiometabolic health

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Summary GWAS statistics are publicly available at The Sleep Disorder Knowledge Portal webpage: http://sleepdisordergenetics.org/.Daytime napping is a common, heritable behavior, but its genetic basis and causal relationship with cardiometabolic health remain unclear. Here, we perform a genome-wide association study of self-reported daytime napping in the UK Biobank (n = 452,633) and identify 123 loci of which 61 replicate in the 23andMe research cohort (n = 541,333). Findings include missense variants in established drug targets for sleep disorders (HCRTR1, HCRTR2), genes with roles in arousal (TRPC6, PNOC), and genes suggesting an obesity-hypersomnolence pathway (PNOC, PATJ). Association signals are concordant with accelerometer-measured daytime inactivity duration and 33 loci colocalize with loci for other sleep phenotypes. Cluster analysis identifies three distinct clusters of nap-promoting mechanisms with heterogeneous associations with cardiometabolic outcomes. Mendelian randomization shows potential causal links between more frequent daytime napping and higher blood pressure and waist circumference.National Institute of HealthNational Institute of HealthNational Institute of HealthNational Institute of HealthNational Institute of HealthMGH Research Scholar Fund, Academy of FinlandMedical Research CouncilSpanish Government of Investigation, Development and InnovationSeneca FoundationNIDDKInstrumentarium Science FoundationYrjö Jahnsson Foundatio

    Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

    Full text link
    corecore