17 research outputs found

    Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano

    Get PDF
    International audienceCaldera-forming volcanic eruptions are low-frequency, highimpact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales1. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained2,3. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-formingeruption of Santorini volcano,Greece4, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption5,6. Despite the large volume of erupted magma4 (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicicmagmabatches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems

    Seasonal Pattern of Batrachochytrium dendrobatidis Infection and Mortality in Lithobates areolatus: Affirmation of Vredenburg's “10,000 Zoospore Rule”

    Get PDF
    To fully comprehend chytridiomycosis, the amphibian disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), it is essential to understand how Bd affects amphibians throughout their remarkable range of life histories. Crawfish Frogs (Lithobates areolatus) are a typical North American pond-breeding species that forms explosive spring breeding aggregations in seasonal and semipermanent wetlands. But unlike most species, when not breeding Crawfish Frogs usually live singly—in nearly total isolation from conspecifics—and obligately in burrows dug by crayfish. Crayfish burrows penetrate the water table, and therefore offer Crawfish Frogs a second, permanent aquatic habitat when not breeding. Over the course of two years we sampled for the presence of Bd in Crawfish Frog adults. Sampling was conducted seasonally, as animals moved from post-winter emergence through breeding migrations, then back into upland burrow habitats. During our study, 53% of Crawfish Frog breeding adults tested positive for Bd in at least one sample; 27% entered breeding wetlands Bd positive; 46% exited wetlands Bd positive. Five emigrating Crawfish Frogs (12%) developed chytridiomycosis and died. In contrast, all 25 adult frogs sampled while occupying upland crayfish burrows during the summer tested Bd negative. One percent of postmetamorphic juveniles sampled were Bd positive. Zoospore equivalents/swab ranged from 0.8 to 24,436; five out of eight frogs with zoospore equivalents near or >10,000 are known to have died. In summary, Bd infection rates in Crawfish Frog populations ratchet up from near zero during the summer to over 25% following overwintering; rates then nearly double again during and just after breeding—when mortality occurs—before the infection wanes during the summer. Bd-negative postmetamorphic juveniles may not be exposed again to this pathogen until they take up residence in crayfish burrows, or until their first breeding, some years later

    Updated Guidelines for Manuscripts Describing Instructional Design and Assessment: The IDEAS Format

    No full text
    The article focuses on guidelines for manuscripts describing instructional design. The academic success of faculty members in higher education has been primarily based on the scholarship of research and its resultant publication. A Task Force of the American Association of Colleges of Pharmacy was charged to develop standardized criteria for manuscripts submitted to the American Journal of Pharmaceutical Education (AJPE) for the category of Instructional Design and Assessment. These guidelines apply to innovations that describe and evaluate instructional design and include new courses, parts of courses, integration of selected competencies across the curriculum (e.g., service learning, critical thinking, communication), assessment of instructional outcomes, and the use of technologies and new delivery methods

    Permo-Carboniferous granitoids with Jurassic high temperature metamorphism in Central Pontides, Northern Turkey

    No full text
    In the northern part of the Central Pontides (N Turkey) there are different metamorphic rocks exposed, notably the Devrekani metamorphic rocks. Here, upper amphibolite-lower granulite facies metamorphic rocks contain predominantly paragneiss, orthogneiss and metacarbonate, and to a lesser extent, amphibolite and quartzite, with cross-cutting aplite, pegmatite and granite veins. This is the first report of these rocks and includes new data on the petrochemistry, geochronology and metamorphic evolution of the Devrekani orthogneisses from the Central Pontides. The orthogneisses show five different mineral parageneses with the characteristic mineral assemblage quartz + K-feldspar + plagioclase + biotite ± hornblende ± opaque (± ilmenite and ± magnetite), and accessory minerals (zircon, sphene and apatite). These metamorphic rocks exhibit generally granoblastic, lepidogranoblastic and nematolepidogranoblastic with locally migmatitic and relic micrographic textures. They have well-developed centimeter-spaced gneissic banding and display gneissose structure with symmetric, asymmetric and irregular folds. The petrographic features, mineralogical assemblages and weak migmatization reflect high temperature conditions. Thermometric calculations in the orthogneisses indicate metamorphic temperatures reached 744 ± 33 °C. Field relations, petrography and petrochemistry suggest that the orthogneisses have predominantly granodioritic and some granitic protoliths, that show features of I-type, medium to high-potassic calc-alkaline volcanic arc granitoids. The orthogneisses have high contents of LILEs and low contents of HFSEs with negative Nb and Ti anomalies, which are typical of subduction-related magmas. The orthogneisses also show significant LREE enrichment relative to HREE with negative Eu anomalies (EuN/Eu* = 0.33–1.07) with LaN/LuN = 6.98–20.47 values. Based on U-Pb zircon dating data, the protoliths are related to Permo-Carboniferous (316–252 Ma) magmatism. It is likely that peak metamorphism took place during the Jurassic as reflected by the U-Pb zircon ages (199–158 Ma) and also 40Ar/39Ar from hornblende/biotite (163–152 Ma). The four biotite 40Ar/39Ar average ages from the rock samples are ca. 156 Ma, suggesting that the metamorphic rocks cooled to 350–400 °C at ca. 156 Ma. Conclusively, the Devrekani metamorphic rocks can be ascribed as products of Permo-Carboniferous continental arc magmatism overprinted by Jurassic metamorphism in the northern Central Pontides
    corecore