170 research outputs found

    Inherited germline TP53 mutation encodes a protein with an aberrant C-terminal motif in a case of pediatric adrenocortical tumor

    Get PDF
    Childhood adrenocortical tumor (ACT), a very rare malignancy, has an annual worldwide incidence of about 0.3 per million children younger than 15 years. The association between inherited germline mutations of the TP53 gene and an increased predisposition to ACT was described in the context of the Li-Fraumeni syndrome. In fact, about two-thirds of children with ACT have a TP53 mutation. However, less than 10% of pediatric ACT cases occur in Li-Fraumeni syndrome, suggesting that inherited low-penetrance TP53 mutations play an important role in pediatric adrenal cortex tumorigenesis. We identified a novel inherited germline TP53 mutation affecting the acceptor splice site at intron 10 in a child with an ACT and no family history of cancer. The lack of family history of cancer and previous information about the carcinogenic potential of the mutation led us to further characterize it. Bioinformatics analysis showed that the non-natural and highly hydrophobic C-terminal segment of the frame-shifted mutant p53 protein may disrupt its tumor suppressor function by causing misfolding and aggregation. Our findings highlight the clinical and genetic counseling dilemmas that arise when an inherited TP53 mutation is found in a child with ACT without relatives with Li-Fraumeni-component tumors

    Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury

    Get PDF
    Context: Military recruits and elite athletes are susceptible to stress fracture injuries. Genetic predisposition has been postulated to have a role in their development. The P2X7 receptor (P2X7R) gene, a key regulator of bone remodelling, is a genetic candidate that may contribute to stress fracture predisposition. Objective: To evaluate the putative contribution of P2X7R to stress fracture injury in two separate cohorts, military personnel and elite athletes. Methods: In 210 Israeli Defence Forces (IDF) military conscripts, stress fracture injury was diagnosed (n=43) based on symptoms and a positive bone scan. In a separate cohort of 518 elite athletes, self-reported medical imaging scan-certified stress fracture injuries were recorded (n=125). Non-stress fracture controls were identified from these cohorts who had a normal bone scan or no history or symptoms of stress fracture injury. Study participants were genotyped for functional SNPs within the P2X7R gene using proprietary fluorescence-based competitive allele-specific PCR assay. Pearson Chi-square (χ2) tests, corrected for multiple comparisons, were used to assess associations in genotype frequencies. Results: The variant allele of P2X7R SNP rs3751143 (Glu496Ala- loss of function) was associated with stress fracture injury, while the variant allele of rs1718119 (Ala348Thr- gain of function) was associated with a reduced occurrence of stress fracture injury in military conscripts (P<0.05). The association of the variant allele of rs3751143 with stress fractures was replicated in elite athletes (P<0.05), whereas the variant allele of rs1718119 was also associated with reduced multiple stress fracture cases in elite athletes (P<0.05). Conclusions: The association between independent P2X7R polymorphisms with stress fracture prevalence supports the role of a genetic predisposition in the development of stress fracture injury

    Cancer risk in close relatives of women with early-onset breast cancer – a population-based incidence study

    Get PDF
    Inherited susceptibility to breast cancer is associated with an early onset and bilateral disease. The extent of familial risks has not, however, been fully assessed in population-based incidence studies. The purpose of the study was to quantify the risks for cancers of the breast, ovary and other sites of close relatives of women in whom breast cancer was diagnosed at an early age. Records collected between 1943 and 1990 at the Danish Cancer Registry were searched, and 2860 women were found in whom breast cancer was diagnosed before age 40. Population registers and parish records were used to identify 14 973 parents, siblings and offspring of these women. Cancer occurrence through to 31 December 1993 was determined within the Cancer Registry's files and compared with national incidence rates. Women with early-onset breast cancer were at a nearly fourfold increased risk of developing a new cancer later in life (268 observed vs 68.9 expected). The excess risk was most evident for second cancer of the breast (181 vs 24.5) and for ovarian cancer (20 vs 3.3). For mothers and sisters, risks for cancers of the breast and ovary were significantly increased by two- to threefold. Bilateral breast cancer and breast–ovarian cancer were very strong predictors of familial risks, with one in four female relatives predicted to develop breast and/or ovarian cancer by age 75. Mothers had a slightly increased risk of colon cancer, but not endometrial cancer. The risk for breast cancer was also increased among fathers (standardized incidence ratio 2.5; 95% CI 0.5–7.4) and especially brothers (29; 7.7–74), although based on small numbers. The risk for prostatic cancer was unremarkable. In this large population-based survey, the first-degree relatives of women who developed breast cancer before age 40 were prone to ovarian cancer as well as male and female breast cancer, but not other tumours that may share susceptibility genes with breast cancer. © 1999 Cancer Research Campaig

    MassCode Liquid Arrays as a Tool for Multiplexed High-Throughput Genetic Profiling

    Get PDF
    Multiplexed detection assays that analyze a modest number of nucleic acid targets over large sample sets are emerging as the preferred testing approach in such applications as routine pathogen typing, outbreak monitoring, and diagnostics. However, very few DNA testing platforms have proven to offer a solution for mid-plexed analysis that is high-throughput, sensitive, and with a low cost per test. In this work, an enhanced genotyping method based on MassCode technology was devised and integrated as part of a high-throughput mid-plexing analytical system that facilitates robust qualitative differential detection of DNA targets. Samples are first analyzed using MassCode PCR (MC-PCR) performed with an array of primer sets encoded with unique mass tags. Lambda exonuclease and an array of MassCode probes are then contacted with MC-PCR products for further interrogation and target sequences are specifically identified. Primer and probe hybridizations occur in homogeneous solution, a clear advantage over micro- or nanoparticle suspension arrays. The two cognate tags coupled to resultant MassCode hybrids are detected in an automated process using a benchtop single quadrupole mass spectrometer. The prospective value of using MassCode probe arrays for multiplexed bioanalysis was demonstrated after developing a 14plex proof of concept assay designed to subtype a select panel of Salmonella enterica serogroups and serovars. This MassCode system is very flexible and test panels can be customized to include more, less, or different markers

    Breast cancer in young women

    Get PDF
    Although uncommon, breast cancer in young women is worthy of special attention due to the unique and complex issues that are raised. This article reviews specific challenges associated with the care of younger breast cancer patients, which include fertility preservation, management of inherited breast cancer syndromes, maintenance of bone health, secondary prevention, and attention to psychosocial issues
    • 

    corecore