72 research outputs found

    Modulating Activity of Vancomycin and Daptomycin on the Expression of Autolysis Cell-Wall Turnover and Membrane Charge Genes in hVISA and VISA Strains

    Get PDF
    Glycopeptides are still the gold standard to treat MRSA (Methicillin Resistant Staphylococcus aureus) infections, but their widespread use has led to vancomycin-reduced susceptibility [heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA) and Vancomycin-Intermediate-Staphylococcus aureus (VISA)], in which different genetic loci (regulatory, autolytic, cell-wall turnover and cell-envelope positive charge genes) are involved. In addition, reduced susceptibility to vancomycin can influence the development of resistance to daptomycin. Although the phenotypic and molecular changes of hVISA/VISA have been the focus of different papers, the molecular mechanisms responsible for these different phenotypes and for the vancomycin and daptomycin cross-resistance are not clearly understood. The aim of our study was to investigate, by real time RT-PCR, the relative quantitative expression of genes involved in autolysis (atl-lytM), cell-wall turnover (sceD), membrane charges (mprF-dltA) and regulatory mechanisms (agr-locus-graRS-walKR), in hVISA and VISA cultured with or without vancomycin and daptomycin, in order to better understand the molecular basis of vancomycin-reduced susceptibility and the modulating activity of vancomycin and daptomycin on the expression of genes implicated in their reduced susceptibility mechanisms. Our results show that hVISA and VISA present common features that distinguish them from Vancomycin-Susceptible Staphylococcus aureus (VSSA), responsible for the intermediate glycopeptide resistance i.e. an increased cell-wall turnover, an increased positive cell-wall charge responsible for a repulsion mechanism towards vancomycin and daptomycin, and reduced agr-functionality. Indeed, VISA emerges from hVISA when VISA acquires a reduced autolysis caused by a down-regulation of autolysin genes, atl/lytM, and a reduction of the net negative cell-envelope charge via dltA over-expression. Vancomycin and daptomycin, acting in a similar manner in hVISA and VISA, can influence their cross-resistance mechanisms promoting VISA behavior in hVISA and enhancing the cell-wall pathways responsible for the intermediate vancomycin resistance in VISA. Daptomycin can also induce a charge repulsion mechanism both in hVISA and VISA increasing the activity of the mprF

    Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission.

    Get PDF
    Genome sequencing is revolutionizing clinical microbiology and our understanding of infectious diseases. Previous studies have largely relied on the sequencing of a single isolate from each individual. However, it is not clear what degree of bacterial diversity exists within, and is transmitted between individuals. Understanding this 'cloud of diversity' is key to accurate identification of transmission pathways. Here, we report the deep sequencing of methicillin-resistant Staphylococcus aureus among staff and animal patients involved in a transmission network at a veterinary hospital. We demonstrate considerable within-host diversity and that within-host diversity may rise and fall over time. Isolates from invasive disease contained multiple mutations in the same genes, including inactivation of a global regulator of virulence and changes in phage copy number. This study highlights the need for sequencing of multiple isolates from individuals to gain an accurate picture of transmission networks and to further understand the basis of pathogenesis.Thanks to Dr Alex O’Neill, University of Leeds and Dr Matthew Ellington, Public Health England for provision of RN4220 and RN4200mutS. We thank the core sequencing and informatics team at the Wellcome Trust Sanger Institute for sequencing of the isolates described in this study. This work was supported by a Medical Research Council Partnership grant (G1001787/1) held between the Department of Veterinary Medicine, University of Cambridge (M.A.H.), the School of Clinical Medicine, University of Cambridge (S.J.P.), the Moredun Research Institute, and the Wellcome Trust Sanger Institute (J.P. and S.J.P). S.J.P. receives support from the NIHR Cambridge Biomedical Research Centre. M.T.G.H., S.R.H. and J.P. were funded by Wellcome Trust grant no. 098051. G.G.R.M. was funded by an MRC studentship.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms756

    Methicillin Resistance Alters the Biofilm Phenotype and Attenuates Virulence in Staphylococcus aureus Device-Associated Infections

    Get PDF
    Clinical isolates of Staphylococcus aureus can express biofilm phenotypes promoted by the major cell wall autolysin and the fibronectin-binding proteins or the icaADBC-encoded polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG). Biofilm production in methicillin-susceptible S. aureus (MSSA) strains is typically dependent on PIA/PNAG whereas methicillin-resistant isolates express an Atl/FnBP-mediated biofilm phenotype suggesting a relationship between susceptibility to β-lactam antibiotics and biofilm. By introducing the methicillin resistance gene mecA into the PNAG-producing laboratory strain 8325-4 we generated a heterogeneously resistant (HeR) strain, from which a homogeneous, high-level resistant (HoR) derivative was isolated following exposure to oxacillin. The HoR phenotype was associated with a R602H substitution in the DHHA1 domain of GdpP, a recently identified c-di-AMP phosphodiesterase with roles in resistance/tolerance to β-lactam antibiotics and cell envelope stress. Transcription of icaADBC and PNAG production were impaired in the 8325-4 HoR derivative, which instead produced a proteinaceous biofilm that was significantly inhibited by antibodies against the mecA-encoded penicillin binding protein 2a (PBP2a). Conversely excision of the SCCmec element in the MRSA strain BH1CC resulted in oxacillin susceptibility and reduced biofilm production, both of which were complemented by mecA alone. Transcriptional activity of the accessory gene regulator locus was also repressed in the 8325-4 HoR strain, which in turn was accompanied by reduced protease production and significantly reduced virulence in a mouse model of device infection. Thus, homogeneous methicillin resistance has the potential to affect agr- and icaADBC-mediated phenotypes, including altered biofilm expression and virulence, which together are consistent with the adaptation of healthcare-associated MRSA strains to the antibiotic-rich hospital environment in which they are frequently responsible for device-related infections in immuno-compromised patients

    Acapsular Staphylococcus aureus with a non-functional agr regains capsule expression after passage through the bloodstream in a bacteremia mouse model

    Get PDF
    Selection pressures exerted on Staphylococcus aureus by host factors during infection may lead to the emergence of regulatory phenotypes better adapted to the infection site. Traits convenient for persistence may be fixed by mutation thus turning these mutants into microevolution endpoints. The feasibility that stable, non-encapsulated S. aureus mutants can regain expression of key virulence factors for survival in the bloodstream was investigated. S. aureus agr mutant HU-14 (IS256 insertion in agrC) from a patient with chronic osteomyelitis was passed through the bloodstream using a bacteriemia mouse model and derivative P3.1 was obtained. Although IS256 remained inserted in agrC, P3.1 regained production of capsular polysaccharide type 5 (CP5) and staphyloxanthin. Furthermore, P3.1 expressed higher levels of asp23/SigB when compared with parental strain HU-14. Strain P3.1 displayed decreased osteoclastogenesis capacity, thus indicating decreased adaptability to bone compared with strain HU-14 and exhibited a trend to be more virulent than parental strain HU-14. Strain P3.1 exhibited the loss of one IS256 copy, which was originally located in the HU-14 noncoding region between dnaG (DNA primase) and rpoD (sigA). This loss may be associated with the observed phenotype change but the mechanism remains unknown. In conclusion, S. aureus organisms that escape the infected bone may recover the expression of key virulence factors through a rapid microevolution pathway involving SigB regulation of key virulence factors.Fil: Suligoy Lozano, Carlos Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Díaz, Rocío E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Gehrke, Ana-katharina Elsa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Ring, Natalie. University of Edinburgh; Reino UnidoFil: Yebra, Gonzalo. University of Edinburgh; Reino UnidoFil: Alves, Joana. University of Edinburgh; Reino UnidoFil: Gómez, Marisa Ileana. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Wendler, Sindy. Universitätsklinikum Jena Und Medizinische Fakultät; AlemaniaFil: Fitzgerald, J. Ross. University of Edinburgh; Reino UnidoFil: Tuchscherr, Lorena. Jena University Hospital; AlemaniaFil: Löffler, Bettina. Jena University Hospital; AlemaniaFil: Sordelli, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Noto Llana, Mariangeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Buzzola, Fernanda Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    The Pleiotropic CymR Regulator of Staphylococcus aureus Plays an Important Role in Virulence and Stress Response

    Get PDF
    We have characterized a novel pleiotropic role for CymR, the master regulator of cysteine metabolism. We show here that CymR plays an important role both in stress response and virulence of Staphylococcus aureus. Genes involved in detoxification processes, including oxidative stress response and metal ion homeostasis, were differentially expressed in a ΔcymR mutant. Deletion of cymR resulted in increased sensitivity to hydrogen peroxide-, disulfide-, tellurite- and copper-induced stresses. Estimation of metabolite pools suggests that this heightened sensitivity could be the result of profound metabolic changes in the ΔcymR mutant, with an increase in the intracellular cysteine pool and hydrogen sulfide formation. Since resistance to oxidative stress within the host organism is important for pathogen survival, we investigated the role of CymR during the infectious process. Our results indicate that the deletion of cymR promotes survival of S. aureus inside macrophages, whereas virulence of the ΔcymR mutant is highly impaired in mice. These data indicate that CymR plays a major role in virulence and adaptation of S. aureus for survival within the host

    The Staphylococcus aureus RNome and Its Commitment to Virulence

    Get PDF
    Staphylococcus aureus is a major human pathogen causing a wide spectrum of nosocomial and community-associated infections with high morbidity and mortality. S. aureus generates a large number of virulence factors whose timing and expression levels are precisely tuned by regulatory proteins and RNAs. The aptitude of bacteria to use RNAs to rapidly modify gene expression, including virulence factors in response to stress or environmental changes, and to survive in a host is an evolving concept. Here, we focus on the recently inventoried S. aureus regulatory RNAs, with emphasis on those with identified functions, two of which are directly involved in pathogenicity
    corecore