1,858 research outputs found

    Horizontal Structures of Velocity and Temperature Boundary Layers in 2D Numerical Turbulent Rayleigh-B\'{e}nard Convection

    Get PDF
    We investigate the structures of the near-plate velocity and temperature profiles at different horizontal positions along the conducting bottom (and top) plate of a Rayleigh-B\'{e}nard convection cell, using two-dimensional (2D) numerical data obtained at the Rayleigh number Ra=10^8 and the Prandtl number Pr=4.4 of an Oberbeck-Boussinesq flow with constant material parameters. The results show that most of the time, and for both velocity and temperature, the instantaneous profiles scaled by the dynamical frame method [Q. Zhou and K.-Q. Xia, Phys. Rev. Lett. 104, 104301 (2010) agree well with the classical Prandtl-Blasius laminar boundary layer (BL) profiles. Therefore, when averaging in the dynamical reference frames, which fluctuate with the respective instantaneous kinematic and thermal BL thicknesses, the obtained mean velocity and temperature profiles are also of Prandtl-Blasius type for nearly all horizontal positions. We further show that in certain situations the traditional definitions based on the time-averaged profiles can lead to unphysical BL thicknesses, while the dynamical method also in such cases can provide a well-defined BL thickness for both the kinematic and the thermal BLs.Comment: 16 pages, 16 figure

    Prandtl-Blasius temperature and velocity boundary layer profiles in turbulent Rayleigh-B\'{e}nard convection

    Get PDF
    The shape of velocity and temperature profiles near the horizontal conducting plates in turbulent Rayleigh-B\'{e}nard convection are studied numerically and experimentally over the Rayleigh number range 108≲Ra≲3×101110^8\lesssim Ra\lesssim3\times10^{11} and the Prandtl number range 0.7≲Pr≲5.40.7\lesssim Pr\lesssim5.4. The results show that both the temperature and velocity profiles well agree with the classical Prandtl-Blasius laminar boundary-layer profiles, if they are re-sampled in the respective dynamical reference frames that fluctuate with the instantaneous thermal and velocity boundary-layer thicknesses.Comment: 10 pages, 6 figure

    Viral and host factors required for avian H5N1 influenza A virus replication in mammalian cells

    Get PDF
    Following the initial and sporadic emergence into humans of highly pathogenic avian H5N1 influenza A viruses in Hong Kong in 1997, we have come to realize the potential for avian influenza A viruses to be transmitted directly from birds to humans. Understanding the basic viral and cellular mechanisms that contribute to infection of mammalian species with avian influenza viruses is essential for developing prevention and control measures against possible future human pandemics. Multiple physical and functional cellular barriers can restrict influenza A virus infection in a new host species, including the cell membrane, the nuclear envelope, the nuclear environment, and innate antiviral responses. In this review, we summarize current knowledge on viral and host factors required for avian H5N1 influenza A viruses to successfully establish infections in mammalian cells. We focus on the molecular mechanisms underpinning mammalian host restrictions, as well as the adaptive mutations that are necessary for an avian influenza virus to overcome them. It is likely that many more viral and host determinants remain to be discovered, and future research in this area should provide novel and translational insights into the biology of influenza virus-host interactions

    Flow reversals in thermally driven turbulence

    Get PDF
    We analyze the reversals of the large scale flow in Rayleigh-B\'enard convection both through particle image velocimetry flow visualization and direct numerical simulations (DNS) of the underlying Boussinesq equations in a (quasi) two-dimensional, rectangular geometry of aspect ratio 1. For medium Prandtl number there is a diagonal large scale convection roll and two smaller secondary rolls in the two remaining corners diagonally opposing each other. These corner flow rolls play a crucial role for the large scale wind reversal: They grow in kinetic energy and thus also in size thanks to plume detachments from the boundary layers up to the time that they take over the main, large scale diagonal flow, thus leading to reversal. Based on this mechanism we identify a typical time scale for the reversals. We map out the Rayleigh number vs Prandtl number phase space and find that the occurrence of reversals very sensitively depends on these parameters.Comment: 4 pages, 4 figure

    Thermal boundary layer profiles in turbulent Rayleigh-B\'enard convection in a cylindrical sample

    Get PDF
    We numerically investigate the structures of the near-plate temperature profiles close to the bottom and top plates of turbulent Rayleigh-B\'{e}nard flow in a cylindrical sample at Rayleigh numbers Ra=10^8 to Ra=2\times10^{12} and Prandtl numbers Pr=6.4 and Pr=0.7 with the dynamical frame method [Q. Zhou and K.-Q. Xia, Phys. Rev. Lett. 104, 104301 (2010)] thus extending previous results for quasi-2-dimensional systems to 3D systems for the first time. The dynamical frame method shows that the measured temperature profiles in the spatially and temporally local frame are much closer to the temperature profile of a laminar, zero-pressure gradient boundary layer according to Pohlhausen than in the fixed reference frame. The deviation between the measured profiles in the dynamical reference frame and the laminar profiles increases with decreasing Pr, where the thermal BL is more exposed to the bulk fluctuations due to the thinner kinetic BL, and increasing Ra, where more plumes are passing the measurement location.Comment: 5 pages, 2 figure

    The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring

    Get PDF
    Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal splenic-placenta-fetal brain axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (IL-6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of IL-6 in Chrna7 mutant mice. We found that the basal level of IL-6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7+/− offspring. The Chrna7+/− offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after maternal infection

    The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs

    Get PDF
    The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised

    Statistical analysis of orientation, shape, and size of solar wind switchbacks

    Get PDF
    One of the main discoveries from the first two orbits of Parker Solar Probe (PSP) was the presence of magnetic switchbacks, whose deflections dominated the magnetic field measurements. Determining their shape and size could provide evidence of their origin, which is still unclear. Previous work with a single solar wind stream has indicated that these are long, thin structures although the direction of their major axis could not be determined. We investigate if this long, thin nature extends to other solar wind streams, while determining the direction along which the switchbacks within a stream were aligned. We try to understand how the size and orientation of the switchbacks, along with the flow velocity and spacecraft trajectory, combine to produce the observed structure durations for past and future orbits. We searched for the alignment direction that produced a combination of a spacecraft cutting direction and switchback duration that was most consistent with long, thin structures. The expected form of a long, thin structure was fitted to the results of the best alignment direction, which determined the width and aspect ratio of the switchbacks for that stream. The switchbacks had a mean width of 50,000 km50,000 \, \rm{km}, with an aspect ratio of the order of 1010. We find that switchbacks are not aligned along the background flow direction, but instead aligned along the local Parker spiral, perhaps suggesting that they propagate along the magnetic field. Since the observed switchback duration depends on how the spacecraft cuts through the structure, the duration alone cannot be used to determine the size or influence of an individual event. For future PSP orbits, a larger spacecraft transverse component combined with more radially aligned switchbacks will lead to long duration switchbacks becoming less common

    A simple clinical scoring system to improve the sensitivity and standardization of the diagnosis of mycosis fungoides type cutaneous T-cell lymphoma: logistic regression of clinical and laboratory data

    Full text link
    Background  The diagnosis of mycosis fungoides (MF) is notoriously difficult to establish because in the early stages, histological features may be nonspecific or merely suggestive. Objectives  To standardize the diagnosis of MF. Methods  We studied 138 patients with suspected MF referred over a 7-year period to a university department of a dermatology-based cutaneous lymphoma clinic. Six diagnostic criteria were evaluated: clinical morphology, clinical distribution, skin biopsy T-cell receptor gene rearrangement (TCR-GR), skin biopsy pan T-cell marker loss ≥ 2, skin biopsy CD4/CD8 ratio ≥ 6, and skin biopsy diffuse epidermal HLA-DR expression. These six clinical and laboratory criteria were compared by logistic regression analysis in patients with histologically diagnosed MF and those with benign disease. Results  Of the 138 patients, 74 had histology of MF, 47 of benign dermatoses and 17 were indeterminate. Close associations were found between a histological diagnosis of MF and TCR-GR (odds ratio 14·4), classical morphology (7·5), classical distribution (2·5) and diffuse epidermal HLA-DR expression (2·8). Logistic regression models were developed depending on the availability of data (either TCR-GR or HLA-DR). Probabilities for correctly diagnosing MF compared with histology as the ‘gold standard’ were derived from these logistic regression models. A scoring system assigning point values based on these probabilities was then created in order to assist the clinician in making the diagnosis. If using TCR-GR data, a positive TCR-GR = 2·5 points, the presence of classical morphology = 2·0 points, and the presence of classical distribution = 1·5 points. A total score of ≥ 3·5 points assigns a high probability (> 85%) of having MF. If using HLA-DR expression, then the presence of classical morphology = 2·5 points, a positive diffuse epidermal HLA-DR expression = 2·0 points, and the presence of classical distribution = 1·5 points. In this case, a total score of ≥ 4·0 points assigns a high probability (> 85%) of MF. Conclusions  The logistic regression models and scoring systems integrate clinical and laboratory assessments, allow rapid probability estimation, and provide a threshold for the diagnosis of MF in an objective, standardized manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75520/1/j.1365-2133.2003.05458.x.pd
    • …
    corecore