51 research outputs found

    Identification and validation of G protein-coupled receptors modulating flow-dependent signaling pathways in vascular endothelial cells

    Get PDF
    Vascular endothelial cells are exposed to mechanical forces due to their presence at the interface between the vessel wall and flowing blood. The patterns of these mechanical forces (laminar vs. turbulent) regulate endothelial cell function and play an important role in determining endothelial phenotype and ultimately cardiovascular health. One of the key transcriptional mediators of the positive effects of laminar flow patterns on endothelial cell phenotype is the zinc-finger transcription factor, krüppel-like factor 2 (KLF2). Given its importance in maintaining a healthy endothelium, we sought to identify endothelial regulators of the KLF2 transcriptional program as potential new therapeutic approaches to treating cardiovascular disease. Using an approach that utilized both bioinformatics and targeted gene knockdown, we identified endothelial GPCRs capable of modulating KLF2 expression. Genetic screening using siRNAs directed to these GPCRs identified 12 potential GPCR targets that could modulate the KLF2 program, including a subset capable of regulating flow-induced KLF2 expression in primary endothelial cells. Among these targets, we describe the ability of several GPCRs (GPR116, SSTR3, GPR101, LGR4) to affect KLF2 transcriptional activation. We also identify these targets as potential validated targets for the development of novel treatments targeting the endothelium. Finally, we highlight the initiation of drug discovery efforts for LGR4 and report the identification of the first known synthetic ligands to this receptor as a proof-of-concept for pathway-directed phenotypic screening to identify novel drug targets

    Experimentelle Untersuchungen an konservierten Sehnen

    No full text

    An early Oligocene age for the oldest known monkeys and rodents of South America

    Get PDF
    The Santa Rosa fossil locality in eastern Perú produced the first Paleogene vertebrate fauna from the Amazon Basin, including the oldest known monkeys from South America. This diverse paleofauna was originally assigned an Eocene age based largely on the stage of evolution of the site's caviomorph rodents and marsupials. Here, we present detrital zircon dates that indicate that the maximum composite age of Santa Rosa is 29.6 ± 0.08 Ma (Lower Oligocene), although several zircons from Santa Rosa date to the Upper Oligocene. The first appearance datum for Caviomorpha in South America is purported to be the CTA-27 site in the Contamana region of Perú, which is hypothesized to be ∼41 Ma (Middle Eocene) in age. However, the presence of the same caviomorph species and/or genera at both CTA-27 and at Santa Rosa is now difficult to reconcile with a >11-My age difference. To further test the Middle Eocene age estimate for CTA-27, we ran multiple Bayesian tip-dating analyses of Caviomorpha, treating the ages of all Paleogene species from Perú as unknown. These analyses produced mean age estimates for Santa Rosa that closely approximate the maximum 29.6 ± 0.08 Ma composite date provided by detrital zircons, but predict that CTA-27 is much younger than currently thought (∼30 Ma). We conclude that the ∼41 Ma age proposed for CTA-27 is incorrect, and that there are currently no compelling Eocene records of either rodents or primates in the known fossil record of South America

    Manipulation and sorting of membrane proteins using patterned diffusion-aided ratchets with AC fields in supported lipid bilayers

    No full text
    We present ratchets capable of directing the movement of charged components within supported bilayer lipid membranes. These ratchets make use of asymmetrically patterned features and AC electric fields, and have been demonstrated to transport charged species such as lipids and transmembrane proteins between two reservoirs. Proteins were present in both orientations in the membrane, with only those with their extra-membranous domain orientated away from the glass substrate being mobile. Proteins in the mobile orientation were transported using these ratchets, thereby sorting the two orientations from one another, and creating an area of the membrane containing five times more protein in one orientation than the other

    Eocene primates of South America and the African origins of New World monkeys

    Get PDF
    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.Fil: Bond, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; ArgentinaFil: Tejedor, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ciencias Naturales - Sede Trelew; ArgentinaFil: Campbell Jr, Kenneth E.. Natural History Museum of Los Angeles County; Estados UnidosFil: Chornogubsky Clerici, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; Argentina. Universidad Nacional de Luján. Departamento de Ciencias Básicas; ArgentinaFil: Novo, Nelson Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Goin, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentin
    corecore