3,037 research outputs found

    Measurements of D0D^{0} and DD^{*} Production in pp + pp Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We report measurements of charmed-hadron (D0D^{0}, DD^{*}) production cross sections at mid-rapidity in pp + pp collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays D0Kπ+D^{0}\rightarrow K^{-}\pi^{+}, D+D0π+Kπ+π+D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+} and their charge conjugates, covering the pTp_T range of 0.6-2.0 GeV/cc and 2.0-6.0 GeV/cc for D0D^{0} and D+D^{*+}, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is dσ/dyy=0ccˉd\sigma/dy|_{y=0}^{c\bar{c}} = 170 ±\pm 45 (stat.) 59+38^{+38}_{-59} (sys.) μ\mub. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.

    Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

    Get PDF
    We present measurements of π\pi^- and π+\pi^+ elliptic flow, v2v_2, at midrapidity in Au+Au collisions at sNN=\sqrt{s_{_{\rm NN}}} = 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, AchA_{ch}, based on data from the STAR experiment at RHIC. We find that π\pi^- (π+\pi^+) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at sNN=27 GeV\sqrt{s_{_{\rm NN}}} = \text{27 GeV} and higher. At sNN=200 GeV\sqrt{s_{_{\rm NN}}} = \text{200 GeV}, the slope of the difference of v2v_2 between π\pi^- and π+\pi^+ as a function of AchA_{ch} exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.Comment: 6 pages, 4 figure

    Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton

    Full text link
    According to the CPT theorem, which states that the combined operation of charge conjugation, parity transformation and time reversal must be conserved, particles and their antiparticles should have the same mass and lifetime but opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus containing a strange quark, more specifically in the hypertriton. This hypernucleus is the lightest one yet discovered and consists of a proton, a neutron, and a Λ\Lambda hyperon. With data recorded by the STAR detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure the Λ\Lambda hyperon binding energy BΛB_{\Lambda} for the hypertriton, and find that it differs from the widely used value{\cite{B_1973}} and from predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the hypertriton is treated as a weakly bound system. Our results place stringent constraints on the hyperon-nucleon interaction{\cite{Hammer2002, STAR-antiH3L}}, and have implications for understanding neutron star interiors, where strange matter may be present{\cite{Chatterjee2016}}. A precise comparison of the masses of the hypertriton and the antihypertriton allows us to test CPT symmetry in a nucleus with strangeness for the first time, and we observe no deviation from the expected exact symmetry

    Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and ϕ\phi meson in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    We present high precision measurements of elliptic flow near midrapidity (y<1.0|y|<1.0) for multi-strange hadrons and ϕ\phi meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy sNN=\sqrt{s_{NN}}= 200 GeV. We observe that the transverse momentum dependence of ϕ\phi and Ω\Omega v2v_{2} is similar to that of π\pi and pp, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30%\% and 30-80%\% collision centrality. There is an indication of the breakdown of previously observed mass ordering between ϕ\phi and proton v2v_{2} at low transverse momentum in the 0-30%\% centrality range, possibly indicating late hadronic interactions affecting the proton v2v_{2}.Comment: 7 pages and 4 figures, Accepted for publication in Physical Review Letter
    corecore