925 research outputs found
L2 CONFIDENCE DEVELOPMENT OF ELF INTERNATIONAL STUDENTS IN TAIWAN
Second Language (L2) confidence is considered an affective variable for L2 users to claim ownership of English. However, the findings of previous studies could not be generalized to international students in a non-English-speaking context like Taiwan since English mainly functions as a lingua franca among individuals with diverse first languages. This study investigated three international students' development of L2 confidence while they were studying in Taiwanese universities. Qualitative semi-structured interviews were conducted on personal background, experiences, critical events, and personal evaluation of their L2 confidence. The interviews were transcribed, coded, and then analyzed in thematic narratives. Specific situations that affected this dynamic L2 confidence development were identified and probed deeper. The findings showed that the three participants seemed more confident in an English as Lingua Franca (ELF) community where local students were absent. Native Speaker (NS)-norms still dominated their English journey, and their confidence level greatly hinged on their NS-based proficiency. The ideology of following the NS English model threatened L2 confidence in ELF interactions. Furthermore, the participants’ perception of their nonnative speaker (NNS) identity might make them less confident. The findings contribute to the pedagogical implications for L2 learners, users and teachers
Interplay of the two ancient metabolites auxin and MEcPP regulates adaptive growth.
The ancient morphoregulatory hormone auxin dynamically realigns dedicated cellular processes that shape plant growth under prevailing environmental conditions. However, the nature of the stress-responsive signal altering auxin homeostasis remains elusive. Here we establish that the evolutionarily conserved plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) controls adaptive growth by dual transcriptional and post-translational regulatory inputs that modulate auxin levels and distribution patterns in response to stress. We demonstrate that in vivo accumulation or exogenous application of MEcPP alters the expression of two auxin reporters, DR5:GFP and DII-VENUS, and reduces the abundance of the auxin-efflux carrier PIN-FORMED1 (PIN1) at the plasma membrane. However, pharmacological intervention with clathrin-mediated endocytosis blocks the PIN1 reduction. This study provides insight into the interplay between these two indispensable signaling metabolites by establishing the mode of MEcPP action in altering auxin homeostasis, and as such, positioning plastidial function as the primary driver of adaptive growth
Recommended from our members
Measuring multiple 17O–13C J-couplings in naphthalaldehydic acid: a combined solid state NMR and density functional theory approach
A combined multinuclear solid state NMR and gauge included projected augmented wave, density functional theory (GIPAW DFT) computational approach is evaluated to determine the four heteronuclear 1J(13C,17O) couplings in solid 17O enriched naphthalaldehydic acid. Direct multi-field 17O magic angle spinning (MAS), triple quantum MAS (3QMAS) and double rotation (DOR) experiments are initially utilised to evaluate the accuracy of the DFT approximations used in the calculation of the isotropic chemical shifts (diso), quadrupole coupling constants (CQ) and asymmetry (ZQ) parameters. These combined approaches give diso values of 313, 200 and 66 ppm for the carbonyl (CQO), ether (–O–) and hydroxyl (–OH) environments, respectively, with the corresponding measured quadrupole products (PQ) being 8.2, 9.0 and 10.6 MHz. The geometry optimised DFT structure derived using the CASTEP code gives firm agreement with the shifts observed for the ether (diso = 223, PQ = 9.4 MHz) and hydroxyl (diso = 62, PQ = 10.5 MHz) environments but the unoptimised experimental XRD structure has better agreement for the carbonyl group (diso = 320, PQ = 8.3 MHz). The determined diso and ZQ values are shown to be consistent with bond lengths closer to 1.222 Å (experimental length) rather than the geometry optimised length of 1.238 Å. The geometry optimised DFT 1J(13C,17O) coupling to the hydroxyl is calculated as 20 Hz and the couplings to the ether were calculated to be 37 (O–CQO) and 32 (O–C–OH) Hz. The scalar coupling parameters for the unoptimised experimental carbonyl group predict a 1J(13C,17O) value of 28 Hz, whilst optimisation gives a value of 27 Hz. These calculated 1J(13C,17O) couplings, together with estimations of the probability of each O environment being isotopically labelled (determined by electrospray ionisation mass spectrometry) and the measured refocussable transverse dephasing (T2 0) behaviour, are combined to simulate the experimental decay behaviour. Good agreement between the measured and calculated decay behaviour is observed
Systematic design of cell membrane coating to improve tumor targeting of nanoparticles
Cell membrane (CM) coating technology is increasingly being applied in nanomedicine, but the entire coating procedure including adsorption, rupture, and fusion is not completely understood. Previously, we showed that the majority of biomimetic nanoparticles (NPs) were only partially coated, but the mechanism underlying this partial coating remains unclear, which hinders the further improvement of the coating technique. Here, we show that partial coating is an intermediate state due to the adsorption of CM fragments or CM vesicles, the latter of which could eventually be ruptured under external force. Such partial coating is difficult to self-repair to achieve full coating due to the limited membrane fluidity. Building on our understanding of the detailed coating process, we develop a general approach for fixing the partial CM coating: external phospholipid is introduced as a helper to increase CM fluidity, promoting the final fusion of lipid patches. The NPs coated with this approach have a high ratio of full coating (similar to 23%) and exhibit enhanced tumor targeting ability in comparison to the NPs coated traditionally (full coating ratio of similar to 6%). Our results provide a mechanistic basis for fixing partial CM coating towards enhancing tumor accumulation.Peer reviewe
Recommended from our members
Evaluation of fast atmospheric dispersion models in a regular street network
The need to balance computational speed and simulation accuracy is a key challenge in designing atmospheric dispersion models that can be used in scenarios where near real-time hazard predictions are needed. This challenge is aggravated in cities, where models need to have some degree of building-awareness, alongside the ability to capture effects of dominant urban flow processes. We use a combination of high-resolution large-eddy simulation (LES) and wind-tunnel data of flow and dispersion in an idealised, equal-height urban canopy to highlight important dispersion processes and evaluate how these are reproduced by representatives of the most prevalent modelling approaches: (i) a Gaussian plume model, (ii) a Lagrangian stochastic model and (iii) street-network dispersion models. Concentration data from the LES, validated against the wind-tunnel data, were averaged over the volumes of streets in order to provide a high-fidelity reference suitable for evaluating the different models on the same footing. For the particular combination of forcing wind direction and source location studied here, the strongest deviations from the LES reference were associated with mean over-predictions of concentrations by approximately a factor of 2 and with a relative scatter larger than a factor of 4 of the mean, corresponding to cases where the mean plume centreline also deviated significantly from the LES. This was linked to low accuracy of the underlying flow models/parameters that resulted in a misrepresentation of pollutant channelling along streets and of the uneven plume branching observed in intersections. The agreement of model predictions with the LES (which explicitly resolves the turbulent flow and dispersion processes) greatly improved by increasing the accuracy of building-induced modifications of the driving flow field. When provided with a limited set of representative velocity parameters, the comparatively simple street-network models performed equally well or better compared to the Lagrangian model run on full 3D wind fields. The study showed that street-network models capture the dominant building-induced dispersion processes in the canopy layer through parametrisations of horizontal advection and vertical exchange processes at scales of practical interest. At the same time, computational costs and computing times associated with the network approach are ideally suited for emergency-response applications
Road traffic crash circumstances and consequences among young unlicensed drivers: A Swedish cohort study on socioeconomic disparities
<p>Abstract</p> <p>Background</p> <p>Young car drivers run a higher risk of road traffic crash and injury not only because of their lack of experience but also because of their young age and their greater propensity for adopting unsafe driving practices. Also, low family socioeconomic position increases the risk of crash and of severe crash in particular. Whether this holds true for young unlicensed drivers as well is not known. Increasing attention is being drawn to the prevalence and practice of unlicensed driving among young people as an important contributor to road traffic fatalities.</p> <p>Methods</p> <p>This is a population-based cohort study linking Swedish national register data for a cohort of 1 616 621 individuals born between 1977 and 1991. Crash circumstances for first-time road traffic crash (RTC) were compared considering licensed and unlicensed drivers. The socioeconomic distribution of injury was assessed considering household socioeconomic position, social welfare benefits, and level of urbanicity of the living area. The main outcome measure is relative risk of RTC.</p> <p>Results</p> <p>RTCs involving unlicensed drivers were over-represented among male drivers, suspected impaired drivers, severe injuries, crashes occurring in higher speed limit areas, and in fair road conditions. Unlicensed drivers from families in a lower socioeconomic position showed increased relative risks for RTC in the range of 1.75 to 3.25. Those living in rural areas had an increased relative risk for a severe RTC of 3.29 (95% CI 2.47 - 4.39) compared to those living in metropolitan areas.</p> <p>Conclusions</p> <p>At the time of the crash, young unlicensed drivers display more risky driving practices than their licensed counterparts. Just as licensed drivers, unlicensed young people from low socioeconomic positions are over-represented in the most severe injury crashes. Whether the mechanisms lying behind those similarities compare between these groups remains to be determined.</p
Efficient Olfactory Coding in the Pheromone Receptor Neuron of a Moth
The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g., the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course, and the intermittency, are in good agreement with those measured experimentally in the field. These results should stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and on the plume characteristics that are most informative for the ‘sniffer’. Both aspects are relevant to the design of olfactory sensors for odour-tracking robots
Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders
Abstract CRISPR/Cas9 holds immense potential to treat a range of genetic disorders. Allele-specific gene disruption induced by non-homologous end-joining (NHEJ) DNA repair offers a potential treatment option for autosomal dominant disease. Here, we successfully delivered a plasmid encoding S. pyogenes Cas9 and sgRNA to the corneal epithelium by intrastromal injection and acheived long-term knockdown of a corneal epithelial reporter gene, demonstrating gene disruption via NHEJ in vivo. In addition, we used TGFBI corneal dystrophies as a model of autosomal dominant disease to assess the use of CRISPR/Cas9 in two allele-specific systems, comparing cleavage using a SNP-derived PAM to a guide specific approach. In vitro, cleavage via a SNP-derived PAM was found to confer stringent allele-specific cleavage, while a guide-specific approach lacked the ability to distinguish between the wild-type and mutant alleles. The failings of the guide-specific approach highlights the necessity for meticulous guide design and assessment, as various degrees of allele-specificity are achieved depending on the guide sequence employed. A major concern for the use of CRISPR/Cas9 is its tendency to cleave DNA non-specifically at “off-target” sites. Confirmation that S. pyogenes Cas9 lacks the specificity to discriminate between alleles differing by a single base-pair regardless of the position in the guide is demonstrated
- …