644 research outputs found
Human exercise-induced circulating progenitor cell mobilization is nitric oxide-dependent and is blunted in South Asian men
This article is available open access through the publisher’s website. Copyright @ 2010 American Heart Foundation.Objective— Circulating progenitor cells (CPC) have emerged as potential mediators of vascular repair. In experimental models, CPC mobilization is critically dependent on nitric oxide (NO). South Asian ethnicity is associated with reduced CPC. We assessed CPC mobilization in response to exercise in Asian men and examined the role of NO in CPC mobilization per se.
Methods and Results— In 15 healthy, white European men and 15 matched South Asian men, CPC mobilization was assessed during moderate-intensity exercise. Brachial artery flow-mediated vasodilatation was used to assess NO bioavailability. To determine the role of NO in CPC mobilization, identical exercise studies were performed during intravenous separate infusions of saline, the NO synthase inhibitor l-NMMA, and norepinephrine.  Flow-mediated vasodilatation (5.8%±0.4% vs 7.9%±0.5%; P=0.002) and CPC mobilization (CD34+/KDR+ 53.2% vs 85.4%; P=0.001; CD133+/CD34+/KDR+ 48.4% vs 73.9%; P=0.05; and CD34+/CD45− 49.3% vs 78.4; P=0.006) was blunted in the South Asian group. CPC mobilization correlated with flow-mediated vasodilatation and l-NMMA significantly reduced exercise-induced CPC mobilization (CD34+/KDR+ −3.3% vs 68.4%; CD133+/CD34+/KDR+ 0.7% vs 71.4%; and CD34+/CD45− −30.5% vs 77.8%; all P<0.001).
Conclusion— In humans, NO is critical for CPC mobilization in response to exercise. Reduced NO bioavailability may contribute to imbalance between vascular damage and repair mechanisms in South Asian men.British Heart Foundatio
Linear scleroderma as a rare cause of enophthalmos: a case report
© 2007 Fernando et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Exploitation of Other Social Amoebae by Dictyostelium caveatum
Dictyostelium amoebae faced with starvation trigger a developmental program during which many cells aggregate and form fruiting bodies that consist of a ball of spores held aloft by a thin stalk. This developmental strategy is open to several forms of exploitation, including the remarkable case of Dictyostelium caveatum, which, even when it constitutes 1/10(3) of the cells in an aggregate, can inhibit the development of the host and eventually devour it. We show that it accomplishes this feat by inhibiting a region of cells, called the tip, which organizes the development of the aggregate into a fruiting body. We use live-cell microscopy to define the D. caveatum developmental cycle and to show that D. caveatum amoebae have the capacity to ingest amoebae of other Dictyostelid species, but do not attack each other. The block in development induced by D. caveatum does not affect the expression of specific markers of prespore cell or prestalk cell differentiation, but does stop the coordinated cell movement leading to tip formation. The inhibition mechanism involves the constitutive secretion of a small molecule by D. caveatum and is reversible. Four Dictyostelid species were inhibited in their development, while D. caveatum is not inhibited by its own compound(s). D. caveatum has evolved a predation strategy to exploit other members of its genus, including mechanisms of developmental inhibition and specific phagocytosis
Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation
Domestication and selective breeding has resulted in over 1000 extant cattle breeds. Many of these breeds do not excel in important traits but are adapted to local environments. These adaptations are a valuable source of genetic material for efforts to improve commercial breeds. As a step toward this goal we identified candidate regions to be under selection in genomes of nine Russian native cattle breeds adapted to survive in harsh climates. After comparing our data to other breeds of European and Asian origins we found known and novel candidate genes that could potentially be related to domestication, economically important traits and environmental adaptations in cattle. The Russian cattle breed genomes contained regions under putative selection with genes that may be related to adaptations to harsh environments (e.g., AQP5, RAD50, and RETREG1). We found genomic signatures of selective sweeps near key genes related to economically important traits, such as the milk production (e.g., DGAT1, ABCG2), growth (e.g., XKR4), and reproduction (e.g., CSF2). Our data point to candidate genes which should be included in future studies attempting to identify genes to improve the extant breeds and facilitate generation of commercial breeds that fit better into the environments of Russia and other countries with similar climates
In Vivo Comparison of Two Human Norovirus Surrogates for Testing Ethanol-Based Handrubs: The Mouse Chasing the Cat!
Human noroviruses (HuNoV), a major cause of acute gastroenteritis worldwide, cannot be readily cultured in the lab. Therefore, a feline calicivirus (FCV) is often used as its surrogate to, among other things, test alcohol-based handrubs (ABHR). The more recent laboratory culture of a mouse norovirus (MNV) provides an alternative. While MNV is closer to HuNoV in several respects, to date, no comparative testing of FCV and MNV survival and inactivation on human hands has been performed. This study was designed to address the knowledge gap. The rates of loss in viability during drying on hands were −1.91 and −1.65% per minute for FCV and MNV, respectively. When the contaminated skin was exposed for 20 s to either a commercial ABHR with 62% (v/v) ethanol or to 75% (v/v) ethanol in water, FCV infectivity was reduced by <1 log10 while that of MNV by nearly 2.8 log10. Extending the contact time to 30 s reduced the FCV titer by almost 2 log10 by both test substances and that of MNV by >3.5 log10 by the commercial ABHR while 75% ethanol did not show any noticeable improvement in activity as compared to the 20 s contact. An 80% (v/v) aqueous solution of ethanol gave only a 1.75 log10 reduction in MNV activity after 20 s. The results show significant differences in the ethanol susceptibility of FCV and MNV in contact times relevant to field use of ABHR and also that 62% ethanol was a more effective virucide than either 75% or 80% ethanol. These findings indicate the need for a review of the continuing use of FCV as a surrogate for HuNoV
Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery
31P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H+) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60–75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism
Renin-angiotensin-aldosterone system polymorphisms: a role or a hole in occurrence and long-term prognosis of acute myocardial infarction at young age
<p>Abstract</p> <p>Background</p> <p>The renin-angiotensin-aldosterone system (RAAS) is involved in the cardiovascular homeostasis as shown by previous studies reporting a positive association between specific RAAS genotypes and an increased risk of myocardial infarction. Anyhow the prognostic role in a long-term follow-up has not been yet investigated.</p> <p>Aim of the study was to evaluate the influence of the most studied RAAS genetic Single Nucleotide Polymorphisms (SNPs) on the occurrence and the long-term prognosis of acute myocardial infarction (AMI) at young age in an Italian population.</p> <p>Methods</p> <p>The study population consisted of 201 patients and 201 controls, matched for age and sex (mean age 40 ± 4 years; 90.5% males). The most frequent conventional risk factors were smoke (p < 0.001), family history for coronary artery diseases (p < 0.001), hypercholesterolemia (p = 0.001) and hypertension (p = 0.002). The tested genetic polymorphisms were angiotensin converting enzyme insertion/deletion (ACE I/D), angiotensin II type 1 receptor (AGTR1) A1166C and aldosterone synthase (CYP11B2) C-344T. Considering a long-term follow-up (9 ± 4 years) we compared genetic polymorphisms of patients with and without events (cardiac death, myocardial infarction, revascularization procedures).</p> <p>Results</p> <p>We found a borderline significant association of occurrence of AMI with the ACE D/I polymorphism (DD genotype, 42% in cases vs 31% in controls; p = 0.056). DD genotype remained statistically involved in the incidence of AMI also after adjustment for clinical confounders.</p> <p>On the other hand, during the 9-year follow-up (65 events, including 13 deaths) we found a role concerning the AGTR1: the AC heterozygous resulted more represented in the event group (p = 0.016) even if not independent from clinical confounders. Anyhow the Kaplan-Meier event free curves seem to confirm the unfavourable role of this polymorphism.</p> <p>Conclusion</p> <p>Polymorphisms in RAAS genes can be important in the onset of a first AMI in young patients (ACE, CYP11B2 polymorphisms), but not in the disease progression after a long follow-up period. Larger collaborative studies are needed to confirm these results.</p
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
- …