255 research outputs found

    Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure

    Get PDF
    Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20ยฐC/63% RH; HOT, 30.2ยฐC/51%RH; VHOT, 40.0ยฐC/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5ยฐC and 39.0ยฐC, duration Trec โ‰ฅ 38.5ยฐC and โ‰ฅ 39.0ยฐC, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature

    Predicting understory maximum shrubs cover using altitude and overstory basal area in different Mediterranean forests

    Get PDF
    In some areas of the Mediterranean basin where the understory stratum represents a critical fire hazard, managing the canopy cover to control the understory shrubby vegetation is an ecological alternative to the current mechanical management techniques. In this study, we determine the relationship between the overstory basal area and the cover of the understory shrubby vegetation for different dominant canopy species (Pinaceae and Fagaceae species) along a wide altitudinal gradient in the province of Catalonia (Spain). Analyses were conducted using data from the Spanish National Forest Inventory. At the regional scale, when all stands are analysed together, a strong negative relationship between mean shrub cover and site elevation was found. Among the Pinaceae species, we found fairly good relationships between stand basal area and the maximum development of the shrub stratum for species located at intermediate elevations (Pinus nigra, Pinus sylvestris). However, at the extremes of the elevationclimatic gradient (Pinus halepensis and Pinus uncinata stands), stand basal area explained very little of the shrub cover variation probably because microsite and topographic factors override its effect. Among the Fagaceae species, a negative relationship between basal area and the maximum development of the shrub stratum was found in Quercus humilis and Fagus sylvatica dominated stands but not in Quercus ilex. This can be due to the particular canopy structure and management history of Q. ilex stands. In conclusion, our study revealed a marked effect of the tree layer composition and the environment on the relationship between the development of the understory and overstory tree structure. More fine-grained studies are needed to provide forest managers with more detailed information about the relationship between these two forest strata

    Agalsidase beta treatment is associated with improved quality of life in patients with Fabry disease: Findings from the Fabry Registry

    Get PDF
    Purpose: To evaluate the effect of agalsidase beta on longitudinal health-related quality of life in patients with Fabry disease. Methods: the SF-36 (R) Health Survey was used to measure health-related quality of life in Fabry Registry patients. Seventy-one men and 59 women who were treated with agalsidase beta (median dose: 1.0 mg/kg/2 weeks) and who had baseline and at least 2 yearly posttreatment health-related quality of life measurements were included in these analyses. A repeated measures model was used to analyze change in score from baseline. Results: Men improved in the physical component summary and in all eight scales of the SF-36 after 1 and 2 years and in the mental component summary after 1 year of agalsidase beta treatment (P < 0.05). Women improved in the mental component summary and in six of the eight scales after 1 and/or 2 years of treatment. Patients whose baseline SF-36 scores were below the median showed the greatest improvements. These responses were comparable with or greater than the published effects of various treatments for multiple sclerosis, rheumatoid arthritis, central neuropathic pain, and Gaucher disease. Conclusion: Long-term treatment with agalsidase beta resulted in substantial improvements in health-related quality of life in both men and women; the effect was more pronounced in men. Genet Med 2010:12(11):703 712.Genzyme CorporationGenzymeNatl Univ Hosp, Dept Endocrinol, DK-2100 Copenhagen, DenmarkSan Bassano Hosp, Dept Neurol, Bassano Del Grappa, ItalyUniv Padua, Dept Neurosci, Padua, ItalyUniv Wurzburg, Dept Med, Wurzburg, GermanyColumbia Univ, Dept Pediat, Div Clin Genet, Coll Phys & Surg, New York, NY 10027 USACincinnati Childrens Hosp, Div Human Genet, Cincinnati, OH USAUniversidade Federal de Sรฃo Paulo, Inatos Metab CREIM, Sรฃo Paulo, BrazilMassachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USAGenzyme Corp, Dept Biomed Data Sci & Informat, Cambridge, MA USAUniversidade Federal de Sรฃo Paulo, Inatos Metab CREIM, Sรฃo Paulo, BrazilWeb of Scienc

    Managing childhood fever and pain โ€“ the comfort loop

    Get PDF
    Parents can transmit their anxiety to their child, and just as children can pick up on parental anxiety, they can also respond to a parent's ability to stay calm in stressful situations. Therefore, when treating children, it is important to address parental anxiety and to improve their understanding of their child's ailment. Parental understanding and management of both pain and fever โ€“ common occurrences in childhood โ€“ is of utmost importance, not just in terms of children's health and welfare, but also in terms of reducing the economic burden of unnecessary visits to paediatric emergency departments. Allaying parental anxiety reduces the child's anxiety and creates a positive feedback loop, which ultimately affects both the child and parent

    Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    Get PDF
    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli

    Very Small Embryonic-Like Stem Cells Purified from Umbilical Cord Blood Lack Stem Cell Characteristics

    Get PDF
    Very small embryonic-like (VSEL) cells have been described as putatively pluripotent stem cells present in murine bone marrow and human umbilical cord blood (hUCB) and as such are of high potential interest for regenerative medicine. However, there remain some questions concerning the precise identity and properties of VSEL cells, particularly those derived from hUCB. For this reason, we have carried out an extensive characterisation of purified populations of VSEL cells from a large number of UCB samples. Consistent with a previous report, we find that VSEL cells are CXCR4+, have a high density, are indeed significantly smaller than HSC and have an extremely high nuclear/cytoplasmic ratio. Their nucleoplasm is unstructured and stains strongly with Hoechst 33342. A comprehensive FACS screen for surface markers characteristic of embryonic, mesenchymal, neuronal or hematopoietic stem cells revealed negligible expression on VSEL cells. These cells failed to expand in vitro under a wide range of culture conditions known to support embryonic or adult stem cell types and a microarray analysis revealed the transcriptional profile of VSEL cells to be clearly distinct both from well-defined populations of pluripotent and adult stem cells and from the mature hematopoietic lineages. Finally, we detected an aneuploid karyotype in the majority of purified VSEL cells by fluorescence in situ hybridisation. These data support neither an embryonic nor an adult stem cell like phenotype, suggesting rather that hUCB VSEL cells are an aberrant and inactive population that is not comparable to murine VSEL cells

    The Transmembrane Domain of CEACAM1-4S Is a Determinant of Anchorage Independent Growth and Tumorigenicity

    Get PDF
    CEACAM1 is a multifunctional Ig-like cell adhesion molecule expressed by epithelial cells in many organs. CEACAM1-4L and CEACAM1-4S, two isoforms produced by differential splicing, are predominant in rat liver. Previous work has shown that downregulation of both isoforms occurs in rat hepatocellular carcinomas. Here, we have isolated an anchorage dependent clone, designated 253T-NT that does not express detectable levels of CEACAM1. Stable transfection of 253-NT cells with a wild type CEACAM1-4S expression vector induced an anchorage independent growth in vitro and a tumorigenic phenotype in vivo. These phenotypes were used as quantifiable end points to examine the functionality of the CEACAM1-4S transmembrane domain. Examination of the CEACAM1 transmembrane domain showed N-terminal GXXXG dimerization sequences and C-terminal tyrosine residues shown in related studies to stabilize transmembrane domain helix-helix interactions. To examine the effects of transmembrane domain mutations, 253-NT cells were transfected with transmembrane domain mutants carrying glycine to leucine or tyrosine to valine substitutions. Results showed that mutation of transmembrane tyrosine residues greatly enhanced growth in vitro and in vivo. Mutation of transmembrane dimerization motifs, in contrast, significantly reduced anchorage independent growth and tumorigenicity. 253-NT cells expressing CEACAM1-4S with both glycine to leucine and tyrosine to valine mutations displayed the growth-enhanced phenotype of tyrosine mutants. The dramatic effect of transmembrane domain mutations constitutes strong evidence that the transmembrane domain is an important determinant of CEACAM1-4S functionality and most likely by other proteins with transmembrane domains containing dimerization sequences and/or C-terminal tyrosine residues

    Notch Signaling Regulates Late-Stage Epidermal Differentiation and Maintains Postnatal Hair Cycle Homeostasis

    Get PDF
    Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes.our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells
    • โ€ฆ
    corecore