64 research outputs found

    Application of BRET to monitor ligand binding to GPCRs

    Get PDF
    Bioluminescence resonance energy transfer (BRET) is a well-established method for investigating protein-protein interactions. Here we present a BRET approach to monitor ligand binding to G protein–coupled receptors (GPCRs) on the surface of living cells made possible by the use of fluorescent ligands in combination with a bioluminescent protein (NanoLuc) that can be readily expressed on the N terminus of GPCRs

    Transcriptional Profiling of Bacillus anthracis Sterne (34F2) during Iron Starvation

    Get PDF
    Lack of available iron is one of many environmental challenges that a bacterium encounters during infection and adaptation to iron starvation is important for the pathogen to efficiently replicate within the host. Here we define the transcriptional response of B. anthracis Sterne (34F2) to iron depleted conditions. Genome-wide transcript analysis showed that B. anthracis undergoes considerable changes in gene expression during growth in iron-depleted media, including the regulation of known and candidate virulence factors. Two genes encoding putative internalin proteins were chosen for further study. Deletion of either gene (GBAA0552 or GBAA1340) resulted in attenuation in a murine model of infection. This attenuation was amplified in a double mutant strain. These data define the transcriptional changes induced during growth in low iron conditions and illustrate the potential of this dataset in the identification of putative virulence determinants for future study

    Non-Invasive In Vivo Imaging of Calcium Signaling in Mice

    Get PDF
    Rapid and transient elevations of Ca2+ within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca2+ concentration ([Ca2+]) rises in live animals using bioluminescence imaging (BLI). Transgenic mice conditionally expressing the Ca2+-sensitive bioluminescent reporter GFP-aequorin targeted to the mitochondrial matrix were studied in several experimental paradigms. Rapid [Ca2+] rises inside the mitochondrial matrix could be readily detected during single-twitch muscle contractions. Whole body patterns of [Ca2+] were monitored in freely moving mice and during epileptic seizures. Furthermore, variations in mitochondrial [Ca2+] correlated to behavioral components of the sleep/wake cycle were observed during prolonged whole body recordings of newborn mice. This non-invasive imaging technique opens new avenues for the analysis of Ca2+ signaling whenever whole body information in freely moving animals is desired, in particular during behavioral and developmental studies

    Retrospective French nationwide survey of childhood aggressive vascular anomalies of bone, 1988-2009

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To document the epidemiological, clinical, histological and radiological characteristics of aggressive vascular abnormalities of bone in children.</p> <p>Study design</p> <p>Correspondents of the French Society of Childhood Malignancies were asked to notify all cases of aggressive vascular abnormalities of bone diagnosed between January 1988 and September 2009.</p> <p>Results</p> <p>21 cases were identified; 62% of the patients were boys. No familial cases were observed, and the disease appeared to be sporadic. Mean age at diagnosis was 8.0 years [0.8-16.9 years]. Median follow-up was 3 years [0.3-17 years]. The main presenting signs were bone fracture (n = 4) and respiratory distress (n = 7), but more indolent onset was observed in 8 cases. Lung involvement, with lymphangiectasies and pleural effusion, was the most frequent form of extraosseous involvement (10/21). Bisphosphonates, alpha interferon and radiotherapy were used as potentially curative treatments. High-dose radiotherapy appeared to be effective on pleural effusion but caused major late sequelae, whereas antiangiogenic drugs like alpha interferon and zoledrenate have had a limited impact on the course of pulmonary complications. The impact of bisphosphonates and alpha interferon on bone lesions was also difficult to assess, owing to insufficient follow-up in most cases, but it was occasionally positive. Six deaths were observed and the overall 10-year mortality rate was about 30%. The prognosis depended mainly on pulmonary and spinal complications.</p> <p>Conclusion</p> <p>Aggressive vascular abnormalities of bone are extremely rare in childhood but are lifethreatening. The impact of anti-angiogenic drugs on pulmonary complications seems to be limited, but they may improve bone lesions.</p

    Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors

    Get PDF
    The role of G protein coupled receptors (GPCRs) in numerous physiological processes that may be disrupted or modified in disease makes them key targets for the development of new therapeutic medicines. A wide variety of resonance energy transfer (RET) techniques such as fluorescence RET and bioluminescence RET have been developed in recent years to detect protein–protein interactions in living cells. Furthermore, these techniques are now being exploited to screen for novel compounds that activate or block GPCRs and to search for new, previously undiscovered signaling pathways activated by well-known pharmacologically classified drugs. The high resolution that can be achieved with these RET methods means that they are well suited to study both intramolecular conformational changes in response to ligand binding at the receptor level and intermolecular interactions involving protein translocation in subcellular compartments resulting from external stimuli. In this review we highlight the latest advances in these technologies to illustrate general principles

    Illuminating the life of GPCRs

    Get PDF
    The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented
    • 

    corecore