61 research outputs found

    Geographic genetic structure of Iberian columbines (gen. Aquilegia)

    Get PDF
    Southern European columbines (genus Aquilegia)are involved in active processes of diversification, and the Iberian Peninsula offers a privileged observatory to witness the process. Studies on Iberian columbines have provided significant advances on species diversification,but we still lack a complete perspective of the genetic diversification in the Iberian scenario. This work explores how genetic diversity of the genus Aquilegia is geographically structured across the Iberian Peninsula. We used Bayesian clustering methods, principal coordinates analyses, and NJ phenograms to assess the genetic relationships among 285 individuals from 62 locations and detect the main lineages. Genetic diversity of Iberian columbines consists of five geographically structured lineages, corresponding to different Iberian taxa. Differentiation among lineages shows particularly complex admixture patterns at Northeast and highly homogeneous toward Northwest and Southeast. This geographic genetic structure suggests the existence of incomplete lineage sorting and interspecific hybridization as could be expected in recent processes of diversification under the influence of quaternary postglacial migrations. This scenario is consistent with what is proposed by the most recent studies on European and Iberian columbines, which point to geographic isolation and divergent selection by habitat specialization as the main diversification drivers of the Iberian Aquilegia complex

    Expression and Functional Studies of Ubiquitin C-Terminal Hydrolase L1 Regulated Genes

    Get PDF
    Deubiquitinating enzymes (DUBs) have been increasingly implicated in regulation of cellular processes, but a functional role for Ubiquitin C-terminal Hydrolases (UCHs), which has been largely relegated to processing of small ubiquitinated peptides, remains unexplored. One member of the UCH family, UCH L1, is expressed in a number of malignancies suggesting that this DUB might be involved in oncogenic processes, and increased expression and activity of UCH L1 have been detected in EBV-immortalized cell lines. Here we present an analysis of genes regulated by UCH L1 shown by microarray profiles obtained from cells in which expression of the gene was inhibited by RNAi. Microarray data were verified with subsequent real-time PCR analysis. We found that inhibition of UCH L1 activates genes that control apoptosis, cell cycle arrest and at the same time suppresses expression of genes involved in proliferation and migration pathways. These findings are complemented by biological assays for apoptosis, cell cycle progression and migration that support the data obtained from microarray analysis, and suggest that the multi-functional molecule UCH L1 plays a role in regulating principal pathways involved in oncogenesis

    Targeted Genome-Wide Enrichment of Functional Regions

    Get PDF
    Only a small fraction of large genomes such as that of the human contains the functional regions such as the exons, promoters, and polyA sites. A platform technique for selective enrichment of functional genomic regions will enable several next-generation sequencing applications that include the discovery of causal mutations for disease and drug response. Here, we describe a powerful platform technique, termed “functional genomic fingerprinting” (FGF), for the multiplexed genomewide isolation and analysis of targeted regions such as the exome, promoterome, or exon splice enhancers. The technique employs a fixed part of a uniquely designed Fixed-Randomized primer, while the randomized part contains all the possible sequence permutations. The Fixed-Randomized primers bind with full sequence complementarity at multiple sites where the fixed sequence (such as the splice signals) occurs within the genome, and multiplex amplify many regions bounded by the fixed sequences (e.g., exons). Notably, validation of this technique using cardiac myosin binding protein-C (MYBPC3) gene as an example strongly supports the application and efficacy of this method. Further, assisted by genomewide computational analyses of such sequences, the FGF technique may provide a unique platform for high-throughput sample production and analysis of targeted genomic regions by the next-generation sequencing techniques, with powerful applications in discovering disease and drug response genes

    Serum iron levels and the risk of Parkinson disease: a Mendelian randomization study

    Get PDF
    BACKGROUND: Although levels of iron are known to be increased in the brains of patients with Parkinson disease (PD), epidemiological evidence on a possible effect of iron blood levels on PD risk is inconclusive, with effects reported in opposite directions. Epidemiological studies suffer from problems of confounding and reverse causation, and mendelian randomization (MR) represents an alternative approach to provide unconfounded estimates of the effects of biomarkers on disease. We performed a MR study where genes known to modify iron levels were used as instruments to estimate the effect of iron on PD risk, based on estimates of the genetic effects on both iron and PD obtained from the largest sample meta-analyzed to date. METHODS AND FINDINGS: We used as instrumental variables three genetic variants influencing iron levels, HFE rs1800562, HFE rs1799945, and TMPRSS6 rs855791. Estimates of their effect on serum iron were based on a recent genome-wide meta-analysis of 21,567 individuals, while estimates of their effect on PD risk were obtained through meta-analysis of genome-wide and candidate gene studies with 20,809 PD cases and 88,892 controls. Separate MR estimates of the effect of iron on PD were obtained for each variant and pooled by meta-analysis. We investigated heterogeneity across the three estimates as an indication of possible pleiotropy and found no evidence of it. The combined MR estimate showed a statistically significant protective effect of iron, with a relative risk reduction for PD of 3% (95% CI 1%-6%; p = 0.001) per 10 microg/dl increase in serum iron. CONCLUSIONS: Our study suggests that increased iron levels are causally associated with a decreased risk of developing PD. Further studies are needed to understand the pathophysiological mechanism of action of serum iron on PD risk before recommendations can be mad

    „Social Manufacturing and Logistics“ – Arbeit in der digitalisierten Produktion

    No full text
    Der Beitrag beruht auf Arbeiten des Forschungsprojektes „SoMaLI“ (Social Manufacturing and Logistics), das vom BMWi im Rahmen des Technologieprogramms „Autonomik für Industrie 4.0“ gefördert wird. Hierbei werden u. a. Experteninterviews in Interessenverbänden (V1-V3), Entwicklerbetrieben (E1-E3) und Anwenderunternehmen (A1-A4) durchgeführt. Das Projekt wird an der Technischen Universität Dortmund in Kooperation des Forschungsgebietes Industrie- und Arbeitsforschung (FIA) und des Lehrstuhls für Förder- und Lagerwesen (FLW) durchgeführt. Zur SoMaLI-Projektgruppe gehören Hartmut Hirsch-Kreinsen, Michael ten Hompel, Peter Ittermann, Johannes Dregger, Jonathan Niehaus, Thomas Kirks und Benedikt Mättig
    corecore