44 research outputs found

    Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

    Get PDF
    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed

    Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric cancer

    Get PDF
    BACKGROUND: IL-1beta has been implicated in inflammatory episode. In view of the inflammatory nature of cancer cachexia, we determined the predictive value of IL-1B-31 T/C, -511 C/T, +3954 C/T and IL-1RN VNTR gene polymorphisms on the occurrence of cachexia associated with locally advanced gastric cancer. METHODS: The study included 214 patients and 230 healthy volunteers. Genomic DNA was prepared from peripheral blood leukocytes. Genotypes and allele frequencies were determined in patients and healthy controls using restriction fragment length polymorphism analysis of polymerase chain reaction products. RESULTS: The overall frequencies of IL-1B-31 T, -511 T, +3954 T and IL-1RN VNTR alleles in patients with locally advanced gastric cancer were all comparable with those in controls. No significant differences were found in the distribution of IL-1B-31 T, -511 T and IL-1RN VNTR between patients with cachexia and without. Patients with cachexia showed a significantly higher prevalence of IL-1B+3954 T allele than those without (P = 0.018). In a logistic regression analysis adjusted for actual weight, carcinoma location and stage, the IL-1B+3954 CT genotype was associated with an odds ratio of 2.512 (95% CI, 1.180 – 5.347) for cachexia. CONCLUSION: The IL-1B+3954 T allele is a major risk for cachexia from locally gastric cancer. Genetic factors studied are not likely to play an important role in the determination of susceptibility to locally advanced gastric cancer

    Systematic Analysis of Pleiotropy in C. elegans Early Embryogenesis

    Get PDF
    Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-throughput RNA interference (RNAi) data from C. elegans and identify “phenotypic signatures”, which are sets of cellular defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and that pleiotropic genes represent “connectors” between these modules. In support of this hypothesis, we find that highly pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic genes act as connecting points between different protein complexes or pathways

    Systematic Analysis of Pleiotropy in C. elegans Early Embryogenesis

    Get PDF
    Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-throughput RNA interference (RNAi) data from C. elegans and identify “phenotypic signatures”, which are sets of cellular defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and that pleiotropic genes represent “connectors” between these modules. In support of this hypothesis, we find that highly pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic genes act as connecting points between different protein complexes or pathways

    Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages

    Get PDF
    BACKGROUND: Investigations on pulmonary macrophages (MΦ) mostly focus on alveolar MΦ (AM) as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM), are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue. METHODS: Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR) expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay. RESULTS: IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG). Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6.CONCLUSION: AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response

    Activation of an NLRP3 Inflammasome Restricts Mycobacterium kansasii Infection

    Get PDF
    Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M. tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1β secretion in macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR (Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M. kansasii-induced inflammasome activation. Finally, the secreted IL-1β derived from caspase-1 activation was shown to restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense against M. kansasii

    Mechanisms of NK Cell-Macrophage Bacillus anthracis Crosstalk: A Balance between Stimulation by Spores and Differential Disruption by Toxins

    Get PDF
    NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms

    Precision mouse models with expanded tropism for human pathogens

    Get PDF
    A major limitation of current humanized mouse models is that they primarily enable the analysis of human-specific pathogens that infect hematopoietic cells. However, most human pathogens target other cell types, including epithelial, endothelial and mesenchymal cells. Here, we show that implantation of human lung tissue, which contains up to 40 cell types, including nonhematopoietic cells, into immunodeficient mice (lung-only mice) resulted in the development of a highly vascularized lung implant. We demonstrate that emerging and clinically relevant human pathogens such as Middle East respiratory syndrome coronavirus, Zika virus, respiratory syncytial virus and cytomegalovirus replicate in vivo in these lung implants. When incorporated into bone marrow/liver/thymus humanized mice, lung implants are repopulated with autologous human hematopoietic cells. We show robust antigen-specific humoral and T-cell responses following cytomegalovirus infection that control virus replication. Lung-only mice and bone marrow/liver/thymus-lung humanized mice substantially increase the number of human pathogens that can be studied in vivo, facilitating the in vivo testing of therapeutics

    Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists

    Get PDF

    Cerebral ischemic damage in diabetes: an inflammatory perspective

    Get PDF
    corecore