15 research outputs found

    Cigarette smoke exposure facilitates allergic sensitization in mice

    Get PDF
    BACKGROUND: Active and passive smoking are considered as risk factors for asthma development. The mechanisms involved are currently unexplained. OBJECTIVE: The aim of this study was to determine if cigarette smoke exposure could facilitate primary allergic sensitization. METHODS: BALB/c mice were exposed to aerosolized ovalbumin (OVA) combined with air or tobacco smoke (4 exposures/day) daily for three weeks. Serology, lung cytopathology, cytokine profiles in bronchoalveolar lavage fluid (BALF) and on mediastinal lymph node cultures as well as lung function tests were performed after the last exposure. The natural history and the immune memory of allergic sensitization were studied with in vivo recall experiments. RESULTS: Exposure to OVA induced a small increase in OVA-specific serum IgE as compared with exposure to PBS (P < 0.05), while no inflammatory reaction was observed in the airways. Exposure to cigarette smoke did not induce IgE, but was characterized by a small but significant neutrophilic inflammatory reaction. Combining OVA with cigarette smoke not only induced a significant increase in OVA-specific IgE but also a distinct eosinophil and goblet cell enriched airway inflammation albeit that airway hyperresponsiveness was not evidenced. FACS analysis showed in these mice increases in dendritic cells (DC) and CD4(+ )T-lymphocytes along with a marked increase in IL-5 measured in the supernatant of lymph node cell cultures. Immune memory experiments evidenced the transient nature of these phenomena. CONCLUSION: In this study we show that mainstream cigarette smoke temporary disrupts the normal lung homeostatic tolerance to innocuous inhaled allergens, thereby inducing primary allergic sensitization. This is characterized not only by the development of persistent IgE, but also by the emergence of an eosinophil rich pulmonary inflammatory reaction

    Aggravation of allergic airway inflammation by cigarette smoke in mice is CD44-dependent

    Get PDF
    Background : Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation. Methods : Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures. Results : In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice. Conclusion : We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics

    Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    Get PDF
    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed

    Cigarette smoke enhances Th-2 driven airway inflammation and delays inhalational tolerance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Active smoking increases asthma severity and is related to diminished treatment efficacy. Animal models in which inhalation of both allergen and mainstream cigarette smoke are combined can help us to understand the complex interaction between both agents. We have recently shown that, in allergic mice, the airway inflammation can be cleared by repeated allergen challenge, resulting in the establishment of a state of inhalational tolerance.</p> <p>Methods</p> <p>In this study, we assessed <it>in vivo </it>the impact of cigarette smoke on the efficacy and time course of this form of tolerance induction. We exposed sensitized mice to concurrent mainstream cigarette smoke and allergen (Ovalbumin- OVA) and measured the airway inflammation at different time points.</p> <p>Results</p> <p>We first confirmed that aerosolized OVA administered for a prolonged time period (4–8 weeks) resulted in the establishment of tolerance. Concurrent OVA and smoke exposure for 2 weeks showed that tobacco smoke enhanced the Th-2 driven airway inflammation in the acute phase. In addition, the induction of the tolerance by repeated inhalational OVA challenge was delayed significantly by the tobacco smoke, since 4 weeks of concurrent exposure resulted in a more persistent eosinophilic airway inflammation, paralleled by a more mature dendritic cell phenotype. However, smoke exposure could not prevent the establishment of tolerance after 8 weeks of antigen exposure as shown by both histopathology (disappearance of the Th-2 driven inflammation) and by <it>in vivo </it>functional experiments. In these tolerized mice, some of the inflammatory responses to the smoke were even attenuated.</p> <p>Conclusion</p> <p>Cigarette smoke enhances acute allergic inflammation and delays, but does not abrogate the development of tolerance due to prolonged challenge with inhaled antigen in experimental asthma.</p

    Differential expression and function of breast regression protein 39 (BRP-39) in murine models of subacute cigarette smoke exposure and allergic airway inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the presence of the chitinase-like molecule YKL40 has been reported in COPD and asthma, its relevance to inflammatory processes elicited by cigarette smoke and common environmental allergens, such as house dust mite (HDM), is not well understood. The objective of the current study was to assess expression and function of BRP-39, the murine equivalent of YKL40 in a murine model of cigarette smoke-induced inflammation and contrast expression and function to a model of HDM-induced allergic airway inflammation.</p> <p>Methods</p> <p>CD1, C57BL/6, and BALB/c mice were room air- or cigarette smoke-exposed for 4 days in a whole-body exposure system. In separate experiments, BALB/c mice were challenged with HDM extract once a day for 10 days. BRP-39 was assessed by ELISA and immunohistochemistry. IL-13, IL-1R1, IL-18, and BRP-39 knock out (KO) mice were utilized to assess the mechanism and relevance of BRP-39 in cigarette smoke- and HDM-induced airway inflammation.</p> <p>Results</p> <p>Cigarette smoke exposure elicited a robust induction of BRP-39 but not the catalytically active chitinase, AMCase, in lung epithelial cells and alveolar macrophages of all mouse strains tested. Both BRP-39 and AMCase were increased in lung tissue after HDM exposure. Examining smoke-exposed IL-1R1, IL-18, and IL-13 deficient mice, BRP-39 induction was found to be IL-1 and not IL-18 or IL-13 dependent, while induction of BRP-39 by HDM was independent of IL-1 and IL-13. Despite the importance of BRP-39 in cellular inflammation in HDM-induced airway inflammation, BRP-39 was found to be redundant for cigarette smoke-induced airway inflammation and the adjuvant properties of cigarette smoke.</p> <p>Conclusions</p> <p>These data highlight the contrast between the importance of BRP-39 in HDM- and cigarette smoke-induced inflammation. While functionally important in HDM-induced inflammation, BRP-39 is a biomarker of cigarette smoke induced inflammation which is the byproduct of an IL-1 inflammatory pathway.</p

    Modelling the asthma phenotype: impact of cigarette smoke exposure

    Get PDF
    Background Asthmatics that are exposed to inhaled pollutants such as cigarette smoke (CS) have increased symptom severity. Approximately 25% of adult asthmatics are thought to be active smokers and many sufferers, especially in the third world, are exposed to high levels of inhaled pollutants. The mechanism by which CS or other airborne pollutants alter the disease phenotype and the effectiveness of treatment in asthma is not known. The aim of this study was to determine the impact of CS exposure on the phenotype and treatment sensitivity of rodent models of allergic asthma. Methods Models of allergic asthma were configured that mimicked aspects of the asthma phenotype and the effect of CS exposure investigated. In some experiments, treatment with gold standard asthma therapies was investigated and end-points such as airway cellular burden, late asthmatic response (LAR) and airway hyper-Reactivity (AHR) assessed. Results CS co-exposure caused an increase in the LAR but interestingly attenuated the AHR. The effectiveness of LABA, LAMA and glucocorticoid treatment on LAR appeared to be retained in the CS-exposed model system. The eosinophilia or lymphocyte burden was not altered by CS co-exposure, nor did CS appear to alter the effectiveness of glucocorticoid treatment. Steroids, however failed to reduce the neutrophilic inflammation in sensitized mice exposed to CS. Conclusions These model data have certain parallels with clinical findings in asthmatics, where CS exposure did not impact the anti-inflammatory efficacy of steroids but attenuated AHR and enhanced symptoms such as the bronchospasm associated with the LAR. These model systems may be utilised to investigate how CS and other airborne pollutants impact the asthma phenotype; providing the opportunity to identify novel targets

    Betel Chewing and Arecoline Affects Eotaxin-1, Asthma and Lung Function

    Get PDF
    Background: Betel nut is commonly used in many countries. Despite evidence suggesting an association with asthma, few studies have investigated the connection between betel nut use and asthma; thus, the underlying mechanism for the association with asthma is also unclear. the aim of this study was to investigate the association between betel chewing and asthma as well as the associations of plasma arecoline (a biomarker for exposure) and eotaxin-1 (a potential mediator) with asthma and lung function.Methods: We recruited 600 hospital-based asthmatic patients and 1200 age- and gender-matched community controls in southern Taiwan. To clarify the mechanism of action for eotaxin-1 in the association between betel chewing and asthma, we also designed an in vitro experiment to study the functional associations between arecoline exposure and eotaxin-1 levels.Results: A significant association was found between asthma and current betel chewing (adjusted odds ratio 2.05, 95% CI = 1.12-3.76), which was independent of potential confounders but was attenuated following adjustment for eotaxin-1. Arecoline and eotaxin-1 levels were positively correlated (Spearman r = 0.303, p = 0.02), while arecoline and arecaidine were negatively correlated with lung function. Functionally, arecoline alone does not induce eotaxin-1 release in vitro from dermal and gingival fibroblasts. However, in the presence of IL-4 and TNF-alpha, arecoline at 100 mg/ml induced more eotaxin-1 release than arecoline at 0 mu g/ml (2700 +/- 98 pg/ml vs 1850 +/- 142 pg/ml, p = 0.01 in dermal fibroblast cells, and 1489 +/- 78 pg/ml vs 1044 +/- 95 pg/ml, p = 0.03 in gingival fibroblast cells, respectively).Conclusion: Betel chewing is associated with asthma in this population, with arecoline induction of eotaxin-1 supported as a plausible causal pathway.National Health Research InstitutesNational Science Council, TaiwanNational Institute for Health Research (NIHR) Biomedical Research Centre and Dementia Biomedical Research Unit at South London and Maudsley NHS Foundation TrustKing's College LondonKaohsiung Med Univ, Coll Hlth Sci, Dept Publ Hlth, Kaohsiung, TaiwanKaohsiung Med Univ, Ctr Excellence Environm Med, Kaohsiung, TaiwanKaohsiung Med Univ, Kaohsiung Med Univ Hosp, Coll Med, Dept Internal Med,Div Pulm & Crit Care Med & Geri, Kaohsiung, TaiwanChang Gung Univ, Chang Gung Mem Hospital, Coll Med, Med Ctr,Dept Med,Div Pulm & Critical Care Med, Kaohsiung, TaiwanKaohsiung Med Univ, Dept Med & Appl Chem, Kaohsiung, TaiwanKaohsiung Chang Gung Mem Hosp, Dept Dermatol, Kaohsiung, TaiwanChang Gung Univ, Coll Med, Kaohsiung, TaiwanKaohsiung Med Univ, Coll Dent Med, Sch Dent, Kaohsiung, TaiwanChina Med Univ Hosp, Environment Omics Dis Res Ctr, Taichung, TaiwanChina Med Univ, Grad Inst Clin Med Sci, Taichung, TaiwanKaohsiung Med Univ, Kaohsiung Med Univ Hosp, Coll Med, Fac Med,Dept Internal Med,Div Pulm & Crit Care Me, Kaohsiung, TaiwanChung Shan Med Univ, Chung Shan Med Univ Hosp, Sch Med, Inst Med,Dept Psychiat, Taichung, TaiwanUniversidade Federal de São Paulo, Dept Psychobiol, São Paulo, BrazilKings Coll London, Inst Psychiat, London, EnglandUniversidade Federal de São Paulo, Dept Psychobiol, São Paulo, BrazilNational Health Research Institutes: NHRI-CN-PD9611PNational Science Council, Taiwan: NSC96-2314-B-037-040-MY3National Science Council, Taiwan: NSC100-2314-B-037-025-MY3Web of Scienc
    corecore