7,640 research outputs found

    Deterministic generation of remote entanglement with active quantum feedback

    Get PDF
    We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone

    Dimension Spectra of Lines

    Full text link
    This paper investigates the algorithmic dimension spectra of lines in the Euclidean plane. Given any line L with slope a and vertical intercept b, the dimension spectrum sp(L) is the set of all effective Hausdorff dimensions of individual points on L. We draw on Kolmogorov complexity and geometrical arguments to show that if the effective Hausdorff dimension dim(a, b) is equal to the effective packing dimension Dim(a, b), then sp(L) contains a unit interval. We also show that, if the dimension dim(a, b) is at least one, then sp(L) is infinite. Together with previous work, this implies that the dimension spectrum of any line is infinite

    An analysis on reasons of non-compliant to cardiac rehabilitation programme

    Get PDF
    Abstract no. 09published_or_final_versio

    Molecular characters and recombinant expression of the carboxylesterase gene of the meadow moth Loxostege sticticalis L. (Lepidoptera: Pyralidae)

    Get PDF
    Insect carboxylesterases are enzymes that catalyze the hydrolysis of ester and amide moieties, which play important roles in insecticide resistance, specifically allelochemical tolerance and developmental regulation. We obtained the cDNA encoding carboxylesterase gene of Loxostege sticticalis (LstiCarE) by a cDNA library screen. The full cDNA of LstiCarE is 1,980 bp in length, containing an open reading frame (ORF) of 1,875 bp, which encodes a preprotein of 625 amino acid residues. The LstiCarE contains the catalytic triad (Ser-His-Glu), the pentapeptide GxSxG motif and GxxHxxD/E motif, which are typical characteristic of esterases. The GxSxG and GxxHxxD/E motifs of LstiCarE are modified as GCSAG and GxxHxxQ, respectively. The 3-D model structure of LstiCarE showed that Ser197, His440 and Glu321 are aggregated together, which form the catalytic triad. The recombinant LstiCarE were successfully expressed in BL21 cells using recombinant plasmid DNA, and showed high carboxylesterase activity. However, the biochemical and physiological functions of carboxylesterase gene in L. sticticalis requires further investigation.Key words: Carboxylesterase gene, Loxostege sticticalis, recombinant expression

    Influence of clinical parameters on short-term outcome in cardiac rehabilitation patients after actue myocardial infarction

    Get PDF
    published_or_final_versio

    Cardiac rehabilitation improves functional and clinical status of patients after AMI or PTCA - a randomised controlled study

    Get PDF
    published_or_final_versio
    corecore