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Abstract

The steady flow around an inclined torus has received little attention, despite being relevant
to many engineering and biological situations, such as the sedimentation of fluidized particles
and the motion of natural micro-swimmers. In this study, we perform three-dimensional
direct numerical simulations of the flow around an inclined torus over a range of aspect ratios
(2 6A 6 3), inclination angles (0 6 θ 6 90◦) and Reynolds numbers (10 6 Re 6 50), with
a focus on the steady flow regime preceding the onset of vortex shedding.

For a fixed Re, we find that as the torus inclines from a flow-normal orientation (θ = 0◦)
to a flow-parallel orientation (θ = 90◦), the drag coefficient (CD) decreases monotonically,
while the lift coefficient (CL) first increases from zero, reaches a maximum at 40◦ 6 θ 6 50◦

and then returns to zero owing to top-down symmetry at full inclination. The decrease in
CD with θ is caused by a decrease in the pressure drag, with almost no change in the viscous
drag. The variation in CL with θ is caused by the pressure lift dominating the viscous lift.
With increasing Re, the overall trends in CD and CL remain qualitatively unchanged but
their quantitative values decrease. Compared with the effects of θ and Re, those of A are
relatively weak for the specific flow conditions examined here. We conclude by performing a
nonlinear regression analysis to generate curve fits for CD and CL in terms ofA, θ and Re.

Keywords: Wakes, bluff-body flows, torus, recirculation zone, direct numerical simulations

1. Introduction1

The flow around three-dimensional (3D) bluff bodies has been the subject of decades2

of analytical, numerical and experimental research [1]. However, these flows continue to3

attract attention owing to their significance in a wide range of established and emerging4

fields, such as the sedimentation of fluidized particles and fibers [2] and the active control5

of flow instabilities [3]. Two of the most widely studied wake flows are those from a circular6

cylinder [4] and from a sphere [5]. However, the flow around a torus, which is the geometrical7

intermediate between a cylinder and a sphere, has been less well studied, despite being8
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prevalent in many engineering and biological situations, such as the flow around helical heat9

exchangers [6] and the motion of natural micro-swimmers such as helical flagella [7].10

Fig. 1: Schematic of a torus in a uniform free-stream: (a) 3D view, (b) front view, (c) side view at zero
inclination, and (d) side view at an inclination angle of θ.

Figure 1 shows the geometry of a typical torus. Its aspect ratio is defined as A ≡ D/d,11

where d is the cross-sectional diameter of the torus and D is its centerline diameter. The12

torus becomes a sphere asA→ 0 but becomes a circular cylinder asA→∞ [8]. Therefore,13

by studying the flow around a torus at intermediate aspect ratios, one can gain insight into14

the connection between sphere wakes (A = 0) and cylinder wakes (A =∞). In such bluff-15

body wakes, it is well known that a series of bifurcations occurs as the Reynolds number16

(Re) increases, taking the flow from a steady creeping state at Re ∼ 1 [9] to an unsteady17

3D state at a higher Re whose exact critical value depends on the subtle details of the bluff-18

body geometry [10, 11]. In the rest of this introduction, we will review the key features of19

these classical wakes at different Reynolds numbers, before presenting our case for the need20

to study torus wakes further, particularly when the Reynolds number is low and when the21

torus is inclined relative to the oncoming free-stream, as illustrated in Fig. 1(d).22

1.1. Flow around a sphere (A = 0)23

For the flow around a sphere, the creeping solution at Re ∼ 1 can be found through the24

analytical method of Stokes [12, 13] or Oseen [14, 15]. As Re increases from ∼ 1, the flow25

remains steady but develops an axisymmetric recirculation zone when Re reaches ≈ 20–24,26

as shown in the experiments of Taneda [9] and Wu & Faeth [16]. Numerical simulations by27

Fornberg [17] have shown that the length of the recirculation zone increases with log(Re)28

until a symmetry-breaking bifurcation occurs at Re ≈ 210. The onset of that bifurcation29

is consistent with the stability analysis of Natarajan & Acrivos [18] and the numerical30

simulations of Johnson & Patel [10] and Tomboulides & Orszag [11], which showed that the31

flow at 210 < Re < 270 is still steady but no longer axisymmetric. At Re = 277.5, stability32

analyses predict another bifurcation, but this time to an unsteady limit cycle [18]. This has33

been confirmed by numerical simulations showing the onset of unsteady flow at Re > 280,34

with periodic vortex shedding occurring above Re ≈ 300 [10, 11].35
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In addition to the wake structure and its dynamics, the drag coefficient and its variation36

with Re are also important considerations, e.g. in the analysis of sedimentation and micro-37

biological flows [19]. Several experimental and numerical studies have been conducted to38

determine the drag coefficient of a sphere at different Reynolds numbers [5, 20]. The main39

findings are that the drag coefficient (i) decreases as Re increases from ∼ 1 to around 35040

because of a transition from viscous-dominated flow to pressure-dominated flow, but that it41

(ii) remains relatively constant at higher Re until the onset of boundary-layer transition at42

Re ∼ O(105) [10, 11]. A comprehensive list of the empirical and semi-empirical correlations43

that have been proposed for the drag coefficient of a sphere can be found in Ref. [5].44

1.2. Flow around a cylinder (A =∞)45

For the flow around a circular cylinder, Underwood [21] has shown that the critical46

Reynolds number at which a steady recirculation zone first forms is Re ≈ 5.75, which47

is consistent with the low-dimensional Galerkin analysis of Noack & Eckelmann [22]. As48

Re increases, the wake remains steady and symmetric about its centerline, but eventually49

transitions – via a supercritical Hopf bifurcation [23] – to an unsteady laminar self-excited50

state of periodic vortex shedding above a critical value of Re. Williamson [24] determined51

that critical value to be Re = 49, but Dušek et al. [25] arrived at a slightly lower value of52

Re = 47.1 via numerical simulations and a truncated Landau model. It is worth noting that53

the symmetry of the cylinder wake prior to its Hopf bifurcation to an unsteady limit cycle54

is in stark contrast to the asymmetry observed in the subcritical flow around a sphere [8].55

Like that of a sphere, the drag coefficient of a circular cylinder undergoes marked changes56

at low Reynolds numbers (0 < Re < 350) [26, 27]. In the steady regime (Re . 47), the drag57

coefficient decreases with increasing Re because both the viscous and pressure components of58

the drag decrease [28]. In the unsteady regime (Re & 47), however, the pressure component59

increases with Re, counteracting the decrease in the viscous component to produce an overall60

increase in the total drag coefficient for Re & 150 [29].61

1.3. Flow around a non-inclined torus (θ = 0◦)62

Several previous studies have investigated the flow around a torus, but mostly at an63

inclination angle of zero (θ = 0◦) where the torus’ axis of rotational symmetry is parallel64

to the free-stream velocity, as illustrated in Fig. 1(c). Wind-tunnel experiments by Roshko65

[30] and Monson [31] showed that as the aspect ratio of a non-inclined torus increases, the66

wake transitions from that of a sphere (A = 0) to that of a circular cylinder (A =∞). The67

critical value of A at which that transition occurs is Acrit ≈ 3.9, which was determined68

by Sheard et al. [8, 32] through numerical simulations and linear Floquet analysis. The69

transition coincides with a change in the scaling relationship between the Strouhal number70

and Re, but only when the latter is high enough to cause periodic vortex shedding.71

To investigate the effect of Re, Leweke & Provansal [33] have conducted wind-tunnel72

experiments on several different non-inclined tori (θ = 0◦). However, they focused mostly73

on A > 10, which is above the critical transition (Acrit ≈ 3.9 [8, 32]) between sphere-like74

wakes and cylinder-like wakes. Therefore, they observed behavior fairly similar to that of a75

cylinder wake. At Re < 350, they found three distinct flow regimes: (i) a steady wake at76
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Re < 50, (ii) vortex shedding at 50 < Re < 200, and (iii) flow transition at 180 < Re < 350.77

During vortex shedding, six periodic modes were identified, including parallel and oblique78

modes. These spatiotemporal dynamics were then successfully modelled with a low-order79

coupled-oscillator system based on the Ginzburg–Landau equation [33].80

At Re ∼ 1, the Stokes drag on a non-inclined torus can be calculated from the exact81

solutions of Majumdar & O’Neill [34] and Goren & O’Neill [35] or from the singularity82

solution of Johnson & Wu [36]. Free-fall experiments [37, 31] and numerical simulations [19]83

have shown that, as Re increases from 1 to 50, the aspect ratio corresponding to minimum84

drag decreases from A = 5 (cylinder-like) to A = 1 (sphere-like). Sheard et al. [19] have85

proposed an empirical formula for the drag coefficient of a non-inclined torus, which appears86

as a power-law fit that is valid for Re < 100. However, no previous studies have quantified87

the drag coefficient of an inclined torus, which is the subject of the present study.88

1.4. Flow around an inclined torus (θ 6= 0◦)89

To our knowledge, there has only been one previous study performed on the flow around90

an inclined torus. Inoue et al. [38] experimentally investigated the spatiotemporal dynamics91

of an inclined torus wake (A = 3 and 5) at two Reynolds numbers above the onset of92

vortex shedding: Re = 600 and 1500. Using flow visualization and ultrasonic anemometry,93

they found that the wake dynamics change elaborately as θ changes. At zero inclination94

(θ = 0◦), two different modes of vortex shedding were observed: (i) a disk mode at A = 395

characterized by an oblique vortex loop and a cylindrical shear layer and (ii) a ring mode96

at A = 5 characterized by the formation of counter-rotating vortex rings. However, no97

difference in the shedding frequency was observed between the two modes. At moderate98

inclination (θ = 45◦), the vortex shedding loses its periodicity owing to nonlinear interactions99

between vortices shed from the inner and outer surfaces of the torus. At strong inclination100

(θ = 80◦), the interactions between those shed vortices strengthen, leading to lock-in via101

synchronization [39], a typical feature of self-excited hydrodynamic oscillators [40, 41, 42].102

Although this study by Inoue et al. [38] has contributed significantly to our understanding of103

the unsteady behavior of inclined torus wakes, it was performed at Reynolds numbers above104

the onset of vortex shedding, leaving many open questions about the steady behavior of such105

wakes, particularly in relation to their recirculation zones and the lift and drag coefficients.106

1.5. Contributions of the present study107

In this numerical study, we examine the flow around an inclined torus at Reynolds108

numbers below the onset of vortex shedding: 10 6 Re 6 50. Our aim is to explore the effect109

of θ on the steady wake behavior, particularly the size and location of the recirculation110

zones and the lift and drag coefficients. In Secs. 2 and 3, we present the flow configuration111

and the numerical framework used in our simulations. In Sec. 4, we validate that numerical112

framework with two case studies performed on two classical wake flows: the flow around a113

sphere (A = 0) and the flow around a non-inclined torus (A = 2 and 3). In Sec. 5, we114

present and discuss our findings by examining the wake structure, recirculation zones, and115

lift and drag coefficients, within a parameter space defined by A, Re and θ. In Sec. 6, we116

conclude with the key results and possible directions for future work.117
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2. Flow configuration118

Direct numerical simulations are performed on a steady uniform free-stream of velocity119

U flowing around a torus inclined at an angle of θ, which is defined as the angle between120

the free-stream velocity and the torus’ axis of rotational symmetry (see Fig. 1d). Several121

inclination angles (0◦ 6 θ 6 90◦) and four aspect ratios (A ≡ D/d = 2, 2.3, 2.5, 3) of122

the torus are considered. These particular values of A are chosen because they are in the123

transitional range between sphere-like behavior and cylinder-like behavior [8, 32].124

Three-dimensional viscous incompressible flow is considered, as governed by the Navier–125

Stokes equations:126

∂tu + u · ∇u = −∇p+
1

Re
∇2u (1)

∇ · u = 0 (2)

where u and p denote the velocity vector and pressure scalar fields, respectively. The127

Reynolds number is defined as Re ≡ Ud/ν, where U is the free-stream velocity, d is the128

cross-sectional diameter of the torus (see Fig. 1c), and ν is the kinematic viscosity. The129

static pressure p is non-dimensionalized by the free-stream dynamic pressure ρU2, where ρ130

is the fluid density.131

As mentioned in Sec. 1, the focus of our study is on the wake characteristics of an inclined132

torus at Reynolds numbers low enough for steady flow. The stability analysis of Sheard et133

al. [8, 32] showed that, within the range of aspect ratios considered here (2 6 A 6 3),134

the bifurcation from steady flow to unsteady flow occurs at Re ≈ 90. Therefore, we keep135

Re 6 50 to conservatively maintain steady flow, which will be validated in Secs. 3 and 4.136

3. Numerical framework137

Figure 2 shows the computational domain, whose boundaries are defined by the Cartesian138

limits of (±L,±W,±H) = (±30d,±17d,±17d). These boundaries are sufficiently far away139

from the torus to keep the flow uniform in the far field. The torus is positioned at (x, y, z) =140

(−L/2, 0, 0) with a no-slip condition imposed on its surface. A free-stream condition is141

imposed on the inlet velocity at the upstream boundary (x = −L), a Neumann stress-free142

condition is imposed on the outlet velocity at the downstream boundary (x = L), and a slip143

condition is imposed on the four lateral boundaries running parallel to the free-stream.144

Direct numerical simulations are performed on a 3D hybrid grid. Cartesian background145

nodes are used for the computational domain, and mesh-free nodes are used for the im-146

mersed rigid torus and its immediate surroundings. Spatial discretization is achieved by the147

combination of (i) a singular value decomposition (SVD) based generalized finite difference148

(GFD) scheme, which is applied to the mesh-free nodes, and (ii) a conventional finite dif-149

ference scheme, which is applied to the Cartesian nodes. The SVD–GFD scheme is also150

applied to a small number of Cartesian nodes having mesh-free nodes in their neighborhood151

of [−∆x,∆x]× [−∆y,∆y]× [−∆z,∆z]. The full details of this SVD–GFD scheme have been152

discussed by Wang et al. [43] and Ang et al. [44], so only a brief description is given below.153

5



Fig. 2: Computational domain for steady uniform flow at velocity U around a torus inclined at an angle of
θ. The size of the computational domain is (±L,±W,±H) = (±30d,±17d,±17d).

The GFD scheme is based on a Taylor series expansion in which the derivative com-154

ponents ∂f19×1 = (∂x, ∂y, ∂z, ∂
2
x, ∂

2
y , ..., ∂

3
y , ∂

3
z )
Tf |x0 of the function f(x) at a reference node155

x0 = (x0, y0, z0) are related to its functional values fi = f(xi) at n support nodes xi =156

xi + ∆xi(i = 1, ..., n) by:157

∆fn×1 = [S]n×19 ∂f19×1 (3)

158

where159

∆fn×1 = (f1 − f0, f2 − f0, ..., fn − f0)T , (4)

160

[S]n×19 =


∆x1 ∆y1 ∆z1 0.5∆x1

2 0.5∆y1
2 0.5∆z1

2 ...
∆x2 ∆y2 ∆z2 0.5∆x2

2 0.5∆y2
2 0.5∆z2

2

∆x3 ∆y3 ∆z3 0.5∆x3
2 0.5∆y3

2 0.5∆z3
2

...
∆xn ∆yn ∆zn 0.5∆xn

2 0.5∆yn
2 0.5∆zn

2

 . (5)

161

162

In general, n > 19 support nodes are needed to approximate the second-order derivatives163

of ∂f19×1 = (∂x, ∂y, ∂z, ∂
2
x, ∂

2
y , ..., ∂

3
y , ∂

3
z )
Tf |x0 to an accuracy of O(|∆x|2). The derivatives164

are calculated by solving the over-determined linear system of Eq. (3) through the use of165

SVD, which minimizes the L2-norm (least squares) of the residual error vector. The error166

components are weighted to give greater importance to nodes closer to the reference node167

x0. The least-squares solution to Eq. (3) is given by:168

∂fn×1 = [SW ]+[W ]∆fn×1 (6)

169

where [SW ]+ denotes the pseudo-inverse of the weighted S-matrix [SW ] = [W ][S]n×9 and170
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[W ] is the n weighting (diagonal) matrix, as given by:171

W =


2/3− 4r̄i

2 + 4r̄i
3 for r̄i 6 1/2

4/3− 4r̄i + 4r̄i
2 − 4r̄i

3/3 for 1/2 < r̄i 6 1
0 for r̄i > 1

(7)

172

where r̄i = |∆xi|/[maxj=1,...,n |∆xj|](i = 1, ..., n) is the normalized nodal distance.173

The governing equations are solved in the time domain using the semi-implicit second-174

order Crank-Nicolson fractional-step method of Chew et al. [45] with modifications made175

to the boundary conditions [44]. The simulations are performed from t = 0 with ∆t = 0.025176

until a steady state is reached. A parallel computing technique based on shared memory177

multi-processors (OpenMP) [46] is used to accelerate the simulations.178

After the velocity and pressure fields are computed, the total force vector acting on the179

torus is found by integrating the local pressure acting over its surface. The total force vector180

is then projected in the +x and −z directions to get the drag force (FD) and the lift force181

(FL), respectively. The lift force is defined to be positive in the downwards (−z) direction182

because, in this study, inclining the torus by a positive value of θ results in downwards lift183

(see Fig. 2). From FD and FL, the drag and lift coefficients are calculated as:184

CD =
FD

0.5ρAθU2
(8)

CL =
FL

0.5ρAθU2
(9)

185

where Aθ is the projected frontal area of the torus. Both the drag and lift forces are made186

up of the sum of a pressure component and a viscous component: FD = FDp + FDv and187

FL = FLp + FLv. In Sec. 5, these will be examined together with CD and CL.188

4. Validation of the numerical framework189

The numerical framework presented in Sec. 3 is validated through two case studies per-190

formed on two classical wake flows: (i) the flow around a sphere and (ii) the flow around a191

non-inclined torus.192

4.1. Validation case study (i): Flow around a sphere193

In the first case study, the flow around a sphere is examined in the steady flow regime at194

10 6 Re 6 200 [10, 11, 18]. The Reynolds number is defined here as Re ≡ UDs/ν, where Ds195

is the diameter of the sphere, U is the free-stream velocity, and ν is the kinematic viscosity.196

The computational domain is a 3D rectangular box with dimensions of 30Ds×15Ds×15Ds,197

which is discretized into 221 × 131 × 131 Cartesian nodes. The Cartesian grid is uniform198

in all three spatial directions within a 4Ds × 2Ds × 2Ds box containing the sphere, with199

a grid spacing of ∆x = ∆y = ∆z = 0.04Ds. The surface of the sphere is discretized into200

2966 mesh-free nodes. Four more layers of mesh-free nodes are placed radially away from201
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the surface, with a smaller radial spacing used for nodes closer to the surface. The distance202

between the surface and the first layer of nodes is 0.017Ds. Preliminary numerical testing203

has confirmed that this mesh is fine enough to produce grid-independent results.204
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1.6
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g
th

Taneda [9]
Johnson & Patel [10]
Tomboulides et al. [11]
Present simulations

(a) Length of the recirculating wake
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1
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D

Clift et al. [5]
Johnson & Patel [10]
Sheard et al. [19]
Roos & Willmarth [20]
Present simulations

(b) Drag coefficient

Fig. 3: Numerical validation on the steady flow around a sphere at 10 6 Re 6 250.

Figure 3 compares our simulations with numerical and experimental data from the liter-205

ature. It can be seen that for 10 6 Re 6 250 (a) a steady recirculating wake forms behind206

the sphere at Re ≈ 20 and elongates with increasing Re, and (b) the drag coefficient first207

decreases sharply and then more gradually as Re increases. These findings are in excel-208

lent quantitative agreement with reference data from the literature [5, 9, 10, 11, 19, 20],209

validating our numerical framework.210

4.2. Validation case study (ii): Flow around a non-inclined torus211

In the second case study, the flow around a non-inclined torus (A = 2 and 3) is examined212

in the steady flow regime at 10 6 Re 6 50 [8, 32, 33]. The computational domain is a 3D213

rectangular box with dimensions of 60d×34d×34d, which is discretized into 231×181×181214

Cartesian nodes. The Cartesian grid is uniform in all three spatial directions within a215

6d × 6d × 6d box containing the torus, with a grid spacing of ∆x = ∆y = ∆z = 0.06d.216

The surface of the torus is discretized into 5420 mesh-free nodes for A = 2 and into 8068217

mesh-free nodes for A = 3. Four more layers of mesh-free nodes are placed radially away218

from the surface, with a smaller radial spacing used for nodes closer to the surface. The219

distance between the surface and the first layer of nodes is 0.026d. Preliminary numerical220

testing has confirmed that this mesh is fine enough to produce grid-independent results.221

Figures 4 and 5 show the streamlines of the flow in the x–y plane at A = 2 and 3, re-222

spectively. In both figures, our 3D SVD–GFD simulations are compared against simulations223

performed in axisymmetric coordinates using an alternative numerical scheme based on the224

finite volume method (FVM) of Yu et al. [47, 48]. For the present values of Re andA, the225

comparison shows excellent agreement. Furthermore, the streamlines are consistent with226

those reported by Sheard et al. [8], whose stability analysis predicts that the flow is steady227
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and axisymmetric for the present values of Re and A. The wake structure can be seen to228

change markedly as Re increases. Behind the A = 2 torus, a detached recirculation zone229

develops near the flow centerline at Re = 10 (Fig. 4a,b), but it grows and moves downstream230

when Re increases to 50 (Fig. 4c,d), leaving behind a second smaller recirculation zone at-231

tached to the back of the torus. Behind the A = 3 torus, there is no recirculation zone at232

Re = 10 (Fig. 5a,b), but a small attached one forms at Re = 20 (Fig. 5c,d). At Re = 50233

(Fig. 5e,f), a second recirculation zone appears behind the outer edge of the first, which234

becomes elongated in the streamwise direction. Unlike the first recirculation zone, however,235

this second one is detached from the torus. The broad agreement in streamline patterns236

between our 3D SVD–GFD method, our axisymmetric FVM method, and the results of237

Sheard et al. [8] is further validation of our numerical framework.238

(a) 3D SVD–GFD: Re = 10 (b) Axisymmetric FVM: Re = 10

(c) 3D SVD–GFD: Re = 50 (d) Axisymmetric FVM: Re = 50

Fig. 4: Numerical validation on the steady flow around a non-inclined torus at A = 2: (a,c) 3D SVD–
GFD simulations and (b,d) axisymmetric FVM simulations. Shown are streamlines in the x–y plane at two
Reynolds numbers: (a,b) Re = 10 and (c,d) Re = 50.
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(a) 3D SVD–GFD: Re = 10 (b) Axisymmetric FVM: Re = 10

(c) 3D SVD–GFD: Re = 20 (d) Axisymmetric FVM: Re = 20

(e) 3D SVD–GFD: Re = 50 (f) Axisymmetric FVM: Re = 50

Fig. 5: Numerical validation on the steady flow around a non-inclined torus atA = 3: (a,c,e) 3D SVD–GFD
simulations and (b,d,f) axisymmetric FVM simulations. Shown are streamlines in the x–y plane at three
Reynolds numbers: (a,b) Re = 10, (c,d) Re = 20 and (e,f) Re = 50.

10



For a more quantitative comparison, Table 1 lists the non-dimensional distances between239

the central plane of a non-inclinedA = 2 torus and the front and rear stagnation points of240

its rearmost recirculation zone at two Reynolds numbers: Re = 25 and 50. For both values241

of Re, the agreement between our 3D SVD–GFD simulations and our axisymmetric FVM242

simulations is within 0.55%, further validating our numerical framework.243

Table 1: Numerical validation on the steady flow around a non-inclined torus atA = 2: non-dimensional dis-
tance from the central plane of the torus to the front and rear stagnation points of its rearmost recirculation
zone at two Reynolds numbers.

Re = 25 Re = 50
Front Rear Front Rear

3D SVD–GFD simulations 1.762 4.116 3.688 6.004
Axisymmetric FVM simulations 1.762 4.112 3.707 6.010

As a final validation step, Fig. 6 shows the drag coefficient (CD) of a non-inclined torus244

at Re 6 160 for A = 2 and 3. For both values of A, as Re increases from around 10,245

CD first decreases sharply but then levels off as the flow transitions from being viscous-246

dominated to being pressure-dominated. This is the same trend observed in the CD of a247

sphere (A = 0) [5, 10, 11]. As before, there is excellent quantitative agreement between248

the three independent numerical schemes: our 3D SVD–GFD simulations, our axisymmetric249

FVM simulations, and the axisymmetric simulations of Sheard et al. [19]. This agreement250

shows that our numerical framework is capable of accurately simulating the steady flow251

around a bluff body at low Re. In the next section, we will use this numerical framework252

to investigate the steady flow around an inclined torus at similarly low Re.253

0 40 80 120 160
Re

0

1

2

3

4

C
D

AR=2: Present 3D SVD-GFD
AR=2: Present axisymmetric FVM
AR=2: Sheard et al. [19]
AR=3: Present 3D SVD-GFD
AR=3: Present axisymmetric FVM
AR=3: Sheard et al. [19]

Fig. 6: Comparison of the drag coefficient of a non-inclined torus (A = 2 and 3) at Re 6 160 across three
independent numerical schemes.
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5. Results and discussion254

5.1. Effect of the inclination angle255

First we examine the effect of θ on the steady wake behavior, focusing on the drag and256

lift coefficients and on how they are influenced by the structure of the recirculation zone.257

5.1.1. Drag and lift coefficients258

Figure 7 shows the drag and lift coefficients of an inclined A = 2 torus as a function259

of θ at four Reynolds numbers: Re = 10, 20, 25 and 50. As the torus inclines (i.e. as θ260

increases), CD decreases monotonically from a maximum at θ = 0◦ to a minimum at θ = 90◦
261

(full inclination). Meanwhile, CL starts from zero at θ = 0◦ because of top-down symmetry262

about the y-axis, reaches a maximum at 40◦ 6 θ 6 50◦, and then returns to zero at θ = 90◦
263

because of a return to top-down symmetry. As Re increases, both CD and CL decrease;264

similar decreases have been observed in the flow around a circular cylinder [26, 28]. The265

decrease in CD is uniform across all values of θ, but the decrease in CL is concentrated at266

intermediate values of θ, where the torus has the least top-down symmetry about the y-axis.267
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Fig. 7: (a) Drag coefficient, (b) lift coefficient, (c) normalized drag coefficient, and (d) lift-to-drag ratio as
a function of θ for steady flow around an inclined A = 2 torus at four Reynolds numbers.
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The decrease in CD with θ is compared across different values of Re by normalizing268

CD by its maximum value, which occurs at θ = 0◦: CD⊥ = CD/CDθ=0
. As can be seen269

from Fig. 7(c), the decrease in the normalized CD⊥ with θ becomes more pronounced as Re270

increases. By fitting quartic polynomials to the CD⊥– θ curves, we find that the location271

of the inflection point shifts to higher θ as Re increases: from θ = 51.8◦ at Re = 10 to272

θ = 59.1◦ at Re = 50. This contrasts with the behavior seen in inclined circular cylinders,273

where the inflection point always occurs at an inclination angle of approximately 45◦ [28].274

Figure 7(d) shows CL/CD as a function of θ. The overall trends are similar to those275

of CL versus θ: as θ increases for a fixed Re, CL/CD starts from zero at zero inclination276

(θ = 0◦), increases to a maximum at moderate inclination, and then returns to zero at full277

inclination (θ = 90◦). There are, however, two notable differences: (i) because CD decreases278

with increasing θ, the critical value of θ at which CL/CD peaks is generally larger than that279

at which CL peaks, and (ii) because CD decreases more rapidly than CL does with increasing280

Re, CL/CD ends up increasing with Re, despite CL itself decreasing with increasing Re.281

Figure 8(a) shows the pressure (CDp) and viscous (CDv) components of the total drag282

coefficient at the flow conditions of Fig. 7. At small θ, the pressure drag exceeds the viscous283

drag for all values of Re. However, as θ increases, the pressure drag decreases monotonically,284

falling below the viscous drag, which remains relatively constant with θ. The critical value285

of θ at which the pressure drag balances the viscous drag increases with Re because the286

latter decreases slightly more than the former does as Re increases. These findings show287

that the decrease in the total drag (CD) with θ seen in Fig. 7 is due primarily to a decrease288

in the pressure drag (CDp) with almost no change in the viscous drag (CDv).289
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Fig. 8: The pressure and viscous components of (a) the drag coefficient and (b) the lift coefficient as a function
of θ for steady flow around an inclinedA = 2 torus at four Reynolds numbers. The solid lines/filled markers
denote the pressure components, and the dashed lines/hollow markers denote the viscous components.

Figure 8(b) shows the pressure (CLp) and viscous (CLv) components of the total lift290

coefficient. Across all values of θ, the pressure lift dominates the viscous lift, making up291

over 85% of the total lift regardless of Re. The viscous lift makes up the remainder of the292
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total lift and is invariably small because the shear stresses acting on the torus surface are293

aligned predominately with the free-stream, perpendicular to the lift direction.294

5.1.2. Wake structure295

To explore the physical cause of the decrease in CD with θ, we show in Fig. 9 streamlines296

from the x–y and x–z planes for steady flow around an A = 2 torus at Re = 50 and four297

inclination angles: (a) θ = 10◦, (b) θ = 30◦, (c) θ = 45◦, and (d) θ = 60◦.298

At θ = 10◦ (Fig. 9a), the outer streamlines diverge, wrap around the torus, and then299

converge downstream. In the x–y plane, there are two distinct recirculation zones on either300

side of the flow centerline: a large detached zone and a small attached zone. These are301

similar to those observed behind a non-inclined torus at 1 6A 6 2 [8] (see also Fig. 4c,d).302

In the x–z plane, there are two recirculation zones in total, both of which are located behind303

the upper (leeward trailing) section of the inclined torus.304

As θ increases (Fig. 9b–d), the small attached recirculation zone in the x–y plane dis-305

appears, and the initially large detached recirculation zone behind it shrinks and moves306

upstream, becoming attached to the torus when θ = 60◦. In the x–z plane, the two distinct307

recirculation zones merge and move behind the hole of the torus. In general, recirculation308

zones are regions of low pressure. When they disappear, shrink or move away from the309

surface of a bluff body, the static pressure behind that body tends to increase, reducing the310

pressure imbalance between the front stagnation point and the rear wake. This reconfigu-311

ration of the recirculation zones could explain why the pressure drag and CD decrease with312

increasing θ, as seen in Sec. 5.1.1. Another contributing factor could be the sheltering effect313

that the lower (windward leading) section of the torus has on the upper (leeward trailing)314

section [49]. This effect is analogous to that which occurs in the flow around two circular315

cylinders arranged in a tandem configuration, for which the drag coefficient is known to316

decrease as the two cylinders approach each other [50]. One may imagine the flow around317

an inclined torus as being similar to that around two short cylinders arranged in an offset-318

tandem configuration. Numerical simulations by Lee et al. [51] have shown that the two319

cylinders need not be in perfect tandem (i.e. θ need not be perfectly 90◦) for there to be320

a drag reduction. For a cylinder-to-cylinder spacing equivalent to that of an A = 2 torus,321

Lee et al. [51] found that CD starts to decrease at θ ≈ 30◦ and continues to decrease all the322

way to θ = 90◦ [51], which is consistent with the CD trends observed in Fig. 7.323

To further explore the changes occurring in the wake structure, we turn to 3D streamlines324

of the flow at θ = 45◦, as shown in Fig. 10. At Re = 10 (Fig. 10a), there is no evidence325

of a recirculation zone. The flow passing through the hole of the torus emerges from the326

back without recirculating and then moves downstream. At Re = 25 (Fig. 10b), a small327

recirculation zone develops immediately downstream of the torus. At Re = 50 (Fig. 10c),328

the recirculation zone grows in the streamwise direction. This can be seen in the streamline329

pattern as well as in the change in sign (from positive to negative) of the local pressure330

coefficient (Cp) on the inner-upstream surface of the torus as Re increases from 25 to 50331

(Fig. 10b–c). Previous research by Yu et al. [52] focusing on the velocity profile of the flow332

around a non-inclined torus (θ = 0◦) has shown that when Re increases from 1 to 70, the333

maximum velocity increases and its location shifts closer to the torus. This could explain334
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why Cp on the inner wall is negative, and why the location and growth of the recirculation335

zone change with increasing Re. Farther downstream, the recirculating fluid is faster on the336

upper side of the torus than it is on the lower side, as evidenced by the diverging streamlines.337

(a) θ = 10◦ (b) θ = 30◦

(c) θ = 45◦ (d) θ = 60◦

Fig. 9: Streamlines of the steady flow around an A = 2 torus at Re = 50 for four inclination angles: (a)
θ = 10◦, (b) θ = 30◦, (c) θ = 45◦, and (d) θ = 60◦.
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(a) Re = 10

(b) Re = 25

(c) Re = 50

Fig. 10: (left) 3D streamlines and (right) local pressure coefficient of the steady flow around anA = 2 torus
at θ = 45◦ for three Reynolds numbers: (a) Re = 10, (b) Re = 25, and (c) Re = 50.

5.2. Effect of the aspect ratio338

Next we examine the effect of A on the drag and lift coefficients.339

5.2.1. Drag and lift coefficients340

Figure 11(a–b) shows the drag and lift coefficients at three aspect ratios (A = 2, 2.5,341

3) and three Reynolds numbers (Re = 10, 25, 50). For most flow conditions, CD and CL342

are only weakly sensitive to A. At zero inclination (θ = 0◦), CD for A = 3 is around 5%343

(Re = 10) to 8% (Re = 50) higher than that forA = 2. At full inclination (θ = 90◦), CD for344

A = 3 is around 8% (Re = 50) to 10% (Re = 10) lower than that forA = 2. Thus, there is345

a critical value of θ above which CD forA = 2 overtakes that forA = 3. This critical angle346

is around 50◦ when Re = 10 but is over 70◦ when Re = 50. Interestingly, CL is much less347

sensitive to A when Re = 10 or 50 than when Re = 25, where CL for A = 2 consistently348

exceeds that for A = 3 over an intermediate range of inclination angles, 45◦ 6 θ 6 80◦.349
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Fig. 11: (a) Drag coefficient, (b) lift coefficient and (c) lift-to-drag ratio as a function of θ for steady flow
around an inclined torus at three aspect ratios and three Reynolds numbers: (solid lines) Re = 10, (dashed
lines) Re = 25, and (dotted lines) Re = 50.

Figure 11(c) shows the lift-to-drag ratio, which combines the overall trends of CD and350

CL. The maximum difference in CL/CD caused by variations in A increases and shifts to351

higher θ as Re increases, starting from less than 4% for Re = 10 (θ = 40◦), increasing to352

29% for Re = 25 (θ = 70◦), and then saturating to around 28% for Re = 50 (θ = 80◦). As353

with Fig. 7(d), CL/CD increases with Re because CD decreases more rapidly than CL does.354

Figure 12(a) shows the pressure (CDp) and viscous (CDv) components of the total drag355

coefficient. Only data for Re = 50 are shown because it is representative of the other values356

of Re. The overall trends are similar to those of Fig. 8(a), where CDp decreases monotonically357

as θ increases, while CDv remains relatively constant. This leads to CDp dominating CDv358

at small θ but then being overtaken by CDv at large θ. In Fig. 12(a), the contribution of359
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CDp to CD for A = 3 is slightly higher than that for A = 2, with the maximum difference360

being around 2% at zero inclination (θ = 0◦). These findings show that, for 2 6 A 6 3,361

the decrease in the total drag (CD) observed as θ increases can be attributed mainly to a362

decrease in the pressure drag (CDp) rather than to changes in the viscous drag (CDv).363

Figure 12(b) shows the pressure (CLp) and viscous (CLv) components of the total lift364

coefficient at Re = 50. For 2 6 A 6 3, CLp dominates CLv at all values of θ because365

the shear stresses acting on the torus surface are aligned mainly parallel to the free-stream366

velocity, perpendicular to the lift vector.367

0 15 30 45 60 75 90
θ(◦)

0

0.25

0.5

0.75

1

C
D
p
,
C

D
v

(a) Drag coefficient

0 15 30 45 60 75 90
θ(◦)

0

0.1

0.2

0.3

C
L
p
,
C

L
v

AR=2
AR=2.5
AR=3

(b) Lift coefficient

Fig. 12: The pressure and viscous components of (a) the drag coefficient and (b) the lift coefficient as a
function of θ for steady flow around an inclined A = 2 torus at Re = 50. The solid lines/filled markers
denote the pressure components, and the dashed lines/hollow markers denote the viscous components.

5.3. Nonlinear regression analysis of CD and CL368

A nonlinear regression analysis is performed to give curve fits for CD and CL as a function369

of three independent variables: (i) the aspect ratio, 2 6 A 6 3, (ii) the inclination angle,370

0 6 θ 6 90◦, and (iii) the Reynolds number, 10 6 Re 6 50. These fits can be used to model371

the drag and lift forces acting on a torus in reduced-order simulations where the detailed372

flow around the torus need not be explicitly resolved, reducing the computational costs [53].373

Table 2 lists the regression models and their coefficients for the curve fits to CD and374

CL. These fits were generated with MATLAB’s nlinfit function, which uses an iterative375

least squares algorithm to calculate the robust weights using the residual from the preceding376

iteration [54]. The form of the model for CD was chosen based on the observation that CD377

decreases with θ similarly to the cosine function. The independent variable Re is included378

as an additive term because its effect does not vary significantly with θ or A and so can379

be decoupled. The form of the model for CL was chosen based on the observation that CL380

increases and decreases with θ similarly to the sine function. For both models, the coefficient381

of determination (R2) is high, with values of R2 = 0.988 for CD and R2 = 0.987 for CL.382

Also shown in Table 2 is the root mean square (RMS) difference between our numerical383

simulations and nonlinear regression analysis. Across 2 6 A 6 3, the RMS difference is384
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4.61% for CD and 8.16% for CL, both of which compare favorably with previous numerical385

simulations on the steady flow around an inclined circular cylinder [28]. AsA increases from386

2 to 3, the RMS difference in CD increases monotonically but that in CL remains relatively387

constant. To visualize this, we show in Fig. 13 the drag and lift coefficients calculated by388

our numerical simulations and those approximated by the curve fits. Overall there is good389

agreement, consistent with the data in Table 2.390

Table 2: Nonlinear regression analysis on the steady flow around an inclined torus. Shown are curve fits for
the drag coefficient (CD) and lift coefficient (CL) as a function of three independent variables: (i) the aspect
ratio, 2 6A 6 3, (ii) the inclination angle, 0 6 θ 6 90◦, and (iii) the Reynolds number, 10 6 Re 6 50.

Model Coefficients R2 RMS Difference

Drag CD = β1A
β2 cos(2θ) + β3Re

β4

β1 = 0.207485
β2 = 0.626308
β3 = 5.781323
β4 = −0.468003

0.988

4.61% for A = 2–3
3.32% for A = 2
3.91% for A = 2.3
4.71% for A = 2.5
5.63% for A = 3

Lift CL = γ1A
γ2Reγ3 sin(2θ)

γ1 = −0.987067
γ2 = −0.115132
γ3 = −0.298905

0.987

8.16% for A = 2–3
8.62% for A = 2
8.27% for A = 2.3
8.51% for A = 2.5
7.48% for A = 3
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Fig. 13: Comparison of the drag and lift coefficients between our numerical simulations and the nonlinear
regression analysis of Table 2.

6. Conclusions391

Using a 3D SVD–GFD scheme, we have performed direct numerical simulations of the392

steady flow around an inclined torus over a range of aspect ratios (2 6A 6 3), inclination393
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angles (0 6 θ 6 90◦) and Reynolds numbers (10 6 Re 6 50). We examined the drag (CD)394

and lift (CL) coefficients of the torus and related their trends to the physical structure of395

the recirculation zones. We then performed a nonlinear regression analysis to generate curve396

fits for CD and CL in terms of A, θ and Re. Our focus was on the steady flow regime – at397

Reynolds numbers below the onset of vortex shedding – because that regime had not been398

explored before but is relevant to many engineering and biological situations, such as the399

sedimentation of particles and the motion of natural micro-swimmers such as helical flagella.400

For a fixed Re, it was found that as the torus inclines from a flow-normal orientation401

(θ = 0◦) to a flow-parallel orientation (θ = 90◦), CD decreases monotonically, while CL first402

increases from zero, reaches a maximum at 40◦ 6 θ 6 50◦ and then returns to zero owing403

to top-down symmetry at full inclination. The decrease in CD with θ was attributed to a404

decrease in the pressure drag, with almost no change in the viscous drag. The variation in CL405

with θ was attributed to the pressure lift dominating the viscous lift, with the latter making406

up less than 15% of the total lift because the shear stresses acting on the torus surface407

are aligned mainly with the free-stream, perpendicular to the lift vector. With increasing408

Re, the overall trends in CD and CL remain qualitatively unchanged but their quantitative409

values decrease – much as they do in the flow around a circular cylinder. Compared with410

the effects of θ and Re, those of A are relatively weak for the particular flow conditions411

examined in this study. Curve fits to CD and CL in terms of A, θ and Re were found to412

be in good agreement with the numerical data, with an RMS difference of less than 9% and413

R2 > 0.987. Future work could involve extending the present simulations to higher Reynolds414

numbers where a series of nonlinear bifurcations to unsteady flow is expected to occur.415
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