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In this theoretical study, we use linear stability analysis to investigate the cause of parietal vortex shedding in Taylor–

Culick flow, which is representative of the flow in solid rocket motors. We focus on the effects of the lateral-injection

Reynolds number and the length-to-radius ratio of the combustion chamber. Through a comparison with pipe flow, we

find that flow turning is a major contributor to parietal vortex shedding. We explore the role of amphidromic points and

find that they can divide the flow field into two distinct regions, an outer region with strong perturbations and an inner

region with weak perturbations. In the outer region, we find that the velocity perturbations develop advection patterns

with axial (streamwise) periodicity, while the pressure perturbations induce flow gradients that enhance shear stresses.

Collectively these effects are thought to combine to induce parietal vortex shedding in solid rocket motors.

I. INTRODUCTION

In solid rocket motors (SRMs), especially those with high

length-to-radius ratios, vortex shedding can be an important

mechanism by which self-excited pressure oscillations arise

in combustion chambers. This has therefore prompted nu-

merous studies on the characterization, prediction and control

of vortex shedding in SRM chambers, in an effort to better

understand unsteady multi-scale phenomena such as combus-

tion instabilities and transition. In seminal work, Flandro1

proposed that vortex shedding could couple with acoustic dis-

turbances in the chamber, producing large-amplitude pressure

oscillations. Several experiments2,3 have since confirmed the

importance of vortex shedding, particularly the vortex struc-

ture and dynamics, in producing self-excited pressure oscil-

lations. Early studies on the mechanisms of vortex shedding

in SRMs focused mainly on the shear layers produced by the

non-smooth or discontinuous geometry of the propellant sur-

face, such as the flow behind backward-facing steps (which

is affected by the angle of the propellant ends, and by the

cavity between the segments) and the flow behind obstacle

structures (which is affected by the inhibitor ring situated be-

tween segments protruding from the propellant surface dur-

ing SRM burning)4. Vortices, however, can also arise without

backward-facing steps or obstacle structures, through an alter-

native mechanism known as parietal vortex shedding.

The importance of parietal vortex shedding was revealed

by Lupoglazoff and Vuillot5 in their numerical simulations of

SRM flow using the unsteady 2D compressible Navier–Stokes

equations. This study was later followed by several supporting

experiments. For example, Avalon et al.6 used planar laser-

induced fluorescence to examine the 2D lateral mass injection

of porous materials in the VECLA facility. The wave pattern

at the downstream end of the channel domain was measured

a)Electronic mail: zpwang@nwpu.edu.cn

for a fixed channel height. The frequency of vortex shed-

ding was found to be equal to one of the longitudinal acoustic

eigenfrequencies of the channel, highlighting the importance

of interactions between parietal vortex shedding and the nat-

ural acoustic modes of the system. In further experiments,

Avalon et al.7 used the VALDO facility, which consists of a

long cylinder with lateral mass injection at the extension sur-

face and which can be thought of as a 3D version of the 2D

VECLA facility6. Parietal vortex shedding was also observed

in this 3D facility, consistent with the results of bi-global sta-

bility analysis. These findings show that parietal vortex shed-

ding is a key flow feature in SRM chambers and has been well

established via numerical simulations and experiments.

The physical cause of parietal vortex shedding has been the

subject of numerous studies, particularly those involving the-

oretical analysis8–10. Traditional vortex theory, as applied to

SRMs, tends to focus on the interaction between fully devel-

oped vortices and acoustic disturbances, but relatively little

is known about the cause of parietal vortex shedding. Back-

ground noise is thought to be a key driving mechanism11,

as previous work has shown that accurate numerical sim-

ulation of parietal vortex shedding requires the addition of

white noise5. Using large-eddy simulations (LES), Apte and

Yang12 investigated the complete laminar-to-turbulent transi-

tion process and found that it occurred at mid-downstream lo-

cations. They also found that, as the Reynolds number in-

creased, the region of peak turbulence intensity shifted down-

stream. The role of lateral mass injection was found to be

particularly influential in reducing wall shear stresses. How-

ever, because the LES of Apte and Yang12 did not reveal

evidence of vortex stretching, further analysis of the full ef-

fect of lateral mass injection is required. In particular, Apte

and Yang12 used a semi-empirical model to capture the ef-

fect of unresolved scales and applied white noise to capture

the effect of surface roughness and pseudo-turbulence. The

resultant predictions may be compared with those from hy-

drodynamic stability analysis13. Using numerical simulations

with a time-dependent turbulence model, Kourta14 showed
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that white noise and turbulence are not always necessary for

the onset of parietal vortex shedding, implying that an intrin-

sic mechanism for flow instability is operative. By perform-

ing a sub-grid stability analysis, Boyer et al.15,16 showed that

the instability frequency calculated theoretically was consis-

tent with the frequency of parietal vortex shedding observed

experimentally. They were able to relate the cause of vortex

generation to singular points in the perturbed velocity field.

Such points are often referred to as amphidromic points.

As the above review has shown, in flows with lateral mass

injection (e.g. SRM flows), parietal vortex shedding is be-

lieved to arise from an intrinsic instability mechanism, which

is thought to be independent of the presence of white noise

and external perturbations. In this theoretical study, we use

linear stability analysis to better understand the mechanism

responsible for parietal vortex shedding. First we examine the

effect of lateral mass injection by comparing it with that of

head mass injection, as modeled with simple pipe flow. Then

we consider the specific characteristics of the flow field pro-

duced by lateral mass injection, with a focus on the creation of

amphidromic points. We relate such singular points, obtained

via analysis of the perturbation variables, to the characteris-

tics of spatially propagating perturbations in the flow. From

these observations, we propose a theoretical explanation for

the generation of parietal vortex shedding, contributing to a

better understanding of unsteady multi-scale combustion phe-

nomena in SRMs17–19.

This paper is organized as follows. We present the prob-

lem configuration and governing equations in Section II, and

then numerically validate the theoretical framework in Sec-

tion III. In Section IV, we examine the hydrodynamic stability

of Taylor–Culick flow under various conditions and compare

its eigenvalue spectrum with that of pipe flow. In Section V,

we perform a bi-global stability analysis and investigate the

effects of flow turning by comparing Taylor–Culick flow with

pipe flow. In Section VI, we conclude by highlighting the key

findings and implications of this study.

II. PROBLEM CONFIGURATION

A. Equations of motion

The geometric configuration under study is classic Taylor–

Culick flow16, which features a cylindrical axisymmetric flow

field with constant lateral velocity injection, as shown in

Fig. 1a. The flow field is thus characterized by the degree

of lateral injection. For comparison, a pipe flow model with

constant head injection is also considered, as shown in Fig. 1b.

The flow in an SRM chamber is at a relatively low speed

(Mach number < 0.3), so the incompressible flow assumption

is adopted20. The reference values for length, velocity, time

and pressure are chosen as R, Vinj, R/Vinj and ρV 2
inj, respec-

tively. Here R is the chamber radius, Vinj is the lateral/head

injection velocity, and ρ is the fluid density. With these refer-

ence values, the non-dimensional form of the governing equa-

tions becomes21,

(a) Taylor–Culick flow

(b) Pipe flow

FIG. 1: Schematic diagram of Taylor-Culick flow and pipe

flow models:(a)Taylor-Culick flow model simulating

nozzleless rocket motor with lateral injection;(b)pipe flow.











∇ ·U = 0,

∂U

∂ t
+(U ·∇)U +∇P =

1

Re
∆U,

(1)

where U = (Ur,Uθ ,Uz) is the velocity field, P is the pressure,

and Re ≡ RVinj/ν is the Reynolds number based on the injec-

tion velocity, where ν is the kinematic viscosity of the fluid.

In linear stability analysis22, the flow field (U, P) can be

decomposed into two parts, the mean and the perturbation,

denoted respectively by an overbar and by a prime,

{

U = Ū + u′,

P = P̄+ p′.
(2)

Substituting Eq. (2) into Eq. (1) and discarding the higher-

order terms leads to a linearized system for the perturbations,











∇ ·u′ = 0,

∂u′

∂ t
+(Ū ·∇)u′+(u′ ·∇)Ū +∇p′ =

1

Re
∆u′.

(3)

In bi-global stability analysis10, perturbations are assumed

to have the following form,
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q′ = q̂(r,z)ei(mθ−ωt), (4)

where q′ = [u′r,u
′

θ ,u
′

z, p′]. The azimuthal wavenumber m is

assumed to be an integer, which makes the problem easier to

decompose. The dynamics of the perturbations is determined

by the complex frequency ω = ωr +ωii. The real part ωr is

the dimensionless angular frequency, and the imaginary part

ωi is the growth rate of the perturbations. A positive (negative)

ωi implies that the perturbations grow (decay) exponentially

in time. Substituting Eq. (4) into Eq. (3) yields a generalized

eigenvalue problem,

Aq̂ = iω ·Bq̂. (5)

The boundary conditions are found by normalizing the flow

conditions and by separating the perturbation variables, which

are chosen to allow for the calculation of a well-posed adjoint

stability problem16. The head and axis are wall and symmetry

boundary conditions, respectively. The lateral injection inlet

has a constant velocity and is assumed to have no external

disturbances. A natural free-stress condition is imposed at the

outlet boundary,

−
1

Re
∇u′ ·n+ p′ ·n = 0, (6)

where n is the outward normal vector at the outlet boundary.

III. VALIDATION

To validate the present theoretical framework, we compute

the eigenvalue spectrum for Taylor–Culick flow at the same

conditions (Re = 2200 and m = 0) as those in the theoretical

study of Boyer et al.16. The results are shown in Fig. 2, where

the red markers represent the eigenvalues calculated here, and

the blue markers represent the eigenvalues reported by Boyer

et al.16. It can be seen that there is reasonable agreement in

the overall trends of the eigenvalues, although systematic dis-

crepancies (offsets) can be identified between the two data

sets. These discrepancies, which grow in magnitude as ωr

increases, are attributed to differences in the number of grid

cells, an effect that has been investigated in detail in our recent

work21. In particular, it was found that the grid dependence

of the stability of Taylor–Culick flow is partly determined by

a structural error rule for the eigenvalue spectra21. Therefore,

the overall error can be reduced by following such a rule. For

this reason, we use a grid size of 30× 250 in the rest of this

study.

As a further validation test, the predictions of the present

linear stability analysis are compared with those of computa-

tional fluid dynamics (CFD) simulations. It should be noted

that, in this comparison, the physical frequency ( f in Hz) can

be calculated from the dimensionless angular frequency (ωr)

via,

f =
Vinj

2πr
ωr. (7)

FIG. 2: Comparison of eigenvalue spectra for Taylor–Culick

flow: the present study vs. Boyer et al.16.

Table I lists the operating conditions of the validation cases

from the literature12,16, while Table II compares the frequency

predictions made here against those made by the LES of Apte

and Yang12. The data in Table II are extracted from the local

peaks (P1 and P2) in the eigenvalue spectra of Fig. 3, which are

calculated for Taylor–Culick flow at two representative values

of the length-to-radius ratio: L/r = 15 and 24. The corre-

sponding frequencies predicted by LES12 are determined by

computing the power spectra of the flow fluctuations. From

Table II, it can be seen that the theoretical and numerical data

match very well in terms of the P2 frequency (differences of

under 1.4%), but match less well in terms of the P1 frequency

(differences of around 14%).

The difference in the P1 frequency prediction can be under-

stood more easily by inspecting Fig. 3. At L/r = 15 (Fig. 3a),

the local peak at P1 in the eigenvalue spectrum corresponds to

a stable mode, as evidenced by the negative value of ωi. When

L/r increases to 24 (Fig. 3b), however, this peak settles onto

the background spectrum, making it difficult to identify with

confidence. In the LES of Apte and Yang12, the P1 mode can

still be identified, presumably owing to the presence of exter-

nal disturbances such as white background noise. For both

L/r = 15 and 24, our linear stability analysis predicts that the

P2 mode exhibits a positive value of ωi, indicating that this

mode is intrinsically hydrodynamically unstable. The fact that

there is excellent agreement in the P2 frequency between the

present analysis and the LES of Apte and Yang12 shows that

we are able to accurately capture the dominant unstable mode

in Taylor–Culick flow.

IV. STABILITY ANALYSIS OF TAYLOR–CULICK FLOW

A. Effect of L/r, Re and m

Fig. 4 shows the eigenvalue spectra for Taylor–Culick flow

at Re = 2500 and four different values of the length-to-radius
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TABLE I: Operating conditions and fluid properties for validation cases.

Re Vinj (1) L (m) R (m) L/r Fluid µ (Pa · s) T (K)

Boyer et al.16 2200 1.024 0.24 0.03 8:1 Air 1.81×10−5 293K

Apte and Yang12 2500 3.1 0.48 0.01 48:1 Air 1.66×10−5 260K

TABLE II: Comparison of mode frequencies between the present linear stability analysis and the LES of Apte and Yang12.

Apte and Yang12 Present linear stability analysis

Physical frequency, f (Hz) Physical frequency, f (Hz) Dimensionless frequency, ωr

L/r = 15 P1 1800 2060 83.46

P2 3500 3531 143.1

L/r = 24 P1 1800 – –

P2 3600 3650 147.9

(a) L/r = 15

(b) L/r = 24

FIG. 3: Eigenvalue spectra for Taylor–Culick flow at two

representative values of the length-to-radius ratio(L/r):(a)

L/r = 15;(b) L/r = 24.

FIG. 4: Eigenvalue spectra for Taylor–Culick flow at

Re = 2500 and four different values of the length-to-radius

ratio (L/r).

ratio (L/r). It can be seen that the initial base flow begins to

lose stability at 14 6 L/r 6 15, where the local peak in ωi on

the eigenvalue branch first becomes positive.

The lateral-injection Reynolds number (Re) is also a key

control parameter in the perturbation equations used for lin-

ear stability analysis23. With the length-to-radius ratio fixed

at L/r = 13, we show in Fig. 5a the influence of Re. It can

be seen that the flow becomes more unstable as Re increases,

with the critical value for instability occurring near Re= 5000.

Application of the separation-of-variables technique to

Eq. 4 enables the azimuthal perturbations to be characterized

by m. When m = 0, the perturbation variables are indepen-

dent of the azimuthal coordinate. When m is real, the per-

turbation variables exhibit azimuthal periodicity. When m is

complex, the perturbation variables exhibit spatial instability.

In quasi-2D stability analysis, m is usually used as an input pa-

rameter. Flow instabilities in large-scale SRMs are governed

predominately by their axial dynamics, so it is reasonable to

assume that m is a real number for bi-global stability analysis
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(a) Effect of Reynolds number at L/r = 13 and m = 0.

(b) Effect of m at Re = 2200 and L/r = 8.

FIG. 5: Eigenvalue spectra for Taylor–Culick flow at various

conditions:(a) Eigen-spectra of different Reynolds numbers

with fixed length to radius ratio and wave number;(b)

Eigen-spectra of different wave numbers with fixed length to

radius ratio and Reynolds number.

in radial–axial coordinates. Fig. 5b shows the effect of m on

the eigenvalue spectra. It can be seen that ωi decreases with

increasing m, implying that the m = 0 mode is the least sta-

ble. Consequently, for a conservative analysis, we focus on

the m = 0 mode from here onwards.

B. Comparison with pipe flow

In cold flow, the Reynolds number is expected to be low.

We therefore calculate the eigenvalue spectra for Taylor–

Culick flow at Re = 2200 using grid dimensions of 30× 250,

as shown in Fig. 6a. For comparison, we perform a similar

calculation for pipe flow with head injection at the same con-

(a) Taylor–Culick flow

(b) Pipe flow

FIG. 6: Comparison of eigenvalue spectra at Re = 2200:(a)

Eigen-branches of Taylor-Culick flow;(b) Eigen-branches of

pipe flow.

ditions, as shown in Fig. 6b. In both subfigures, the red lines

represent the characteristic branches consisting of a family of

eigenvalues (denoted by blue circular markers). The filled red

markers are of particular interest. Labels B0–Bn denote stable

branches, while labels P1–P3 denote eigenvalues of interest.

An examination of the eigenvalue spectra in Fig. 6 shows

that both Taylor–Culick flow and pipe flow are stable, with

ωi taking on negative values for all branches considered here.

The eigenvalue spectrum for pipe flow contains characteristic

branches whose attenuation rate increases successively from

B1 to Bn (Fig. 6b). Each of these branches consists of a large

number of discrete eigenvalues, which represent the intrinsic

frequencies of the perturbations and which correspond to dif-

ferent spatial perturbation patterns, as will be shown in Fig. 8.

It should be noted that the discreteness of the eigenvalues is

independent of the numerical method used. Coupling reso-
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FIG. 7: Results from our linear stability analysis.

nance may occur if an external excitation source is present at

an appropriate frequency close to that of an eigenvalue. For

each branch, the largest value of ωi is of particular interest, as

the corresponding spatial perturbation pattern is the one that

is most easily excited and hence most readily observable in an

actual nonlinear flow.

The eigenvalue spectra for Taylor–Culick flow contain

branch structures B0–Bn, as shown in Fig. 6a. The main dif-

ference with respect to pipe flow (Fig. 6b) is in the B0 branch,

which appears only in Taylor–Culick flow. As for the other

branches, the instability frequencies for Taylor–Culick flow

are consistently higher than those for pipe flow. Furthermore,

ωi for Taylor–Culick flow is an order of magnitude smaller

than that for pipe flow, indicating greater stability. In the next

section, we provide a more detailed analysis of the associated

eigenvectors.

V. PERTURBATION CHARACTERISTICS

A. Spatial distribution of perturbation components

By examining the growth rate alongside the spatial pertur-

bation pattern, one can gain further insight into the character-

istics of the unstable modes. The spatial form of such modes

can be extracted via CFD by subtracting the time-averaged

flow field from the instantaneous flow field. For example, we

consider LES of the flow in a lateral injection channel by Apte

and Yang12. The results of Apte and this article can be used

as mutual verification. As the flow evolves downstream, the

perturbation variables can be seen growing progressively. Our

linear stability analysis (Fig. 7) produces an accurate estimate

of the velocity fluctuations upstream of the transition zone.

This suggests that the transition dynamics is potentially gov-

erned by the linear mechanisms near the inception of instabil-

ity.

(a) B1

(b) B2

(c) B3

FIG. 8: Velocity perturbation amplitude in pipe flow:(a)

Eigenvector in branch B1;(b) Eigenvector in branch B2; and

(c) Eigenvector in branch B3 .

B. Comparison of bi-global modes: Taylor–Culick flow vs
pipe flow

Fig. 8 shows the spatial distribution of the velocity pertur-

bation amplitude for branches B1, B2 and B3 in pipe flow (see

Fig. 6b for reference). It can be seen that the perturbation

distribution is fairly weak and uniform throughout the initial

part of the flow domain (z < 6), but it then develops high-

amplitude radially periodic structures at the downstream end

(6 < z < 8), resulting in peak values at a station of z = 8.

As for Taylor–Culick flow, we show in Fig. 9 the spatial

distribution of the velocity perturbation amplitude for eigen-

values P1, P2 and P3 from Fig. 6a. For eigenvalue P1, which

sits on a branch (B0) that does not exist in pipe flow, the pertur-

bation distribution is concentrated at the central axis (Fig. 9a).

This is due to the radially symmetric velocity injection: flow is

first injected with its momentum perpendicular to the wall sur-

face but is then redirected in a direction parallel to the central

axis. The perturbation distribution for eigenvalues P2 (Fig. 9b)

and P3 (Fig. 9c) show that, unlike pipe flow (Fig. 8), Taylor–

Culick flow does not exhibit radially periodic structures. In-

stead axially periodic structures emerge in the outer-half of

the chamber radius, with the structures for eigenvalue P3 ex-

tending farther upstream than those for eigenvalue P2.
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(a) P1

(b) P2

(c) P3

FIG. 9: Velocity perturbation amplitude in Taylor–Culick

flow:(a) Eigenvalue of P1; (b) Eigenvalue of P2; and (c)

Eigenvalue of P3.

C. Instability mechanism

1. Effect of amphidromic points

In Table II, we showed that the frequency of mode P2 is in

close agreement with that predicted by the LES of Apte and

Yang12. We therefore focus on this particular mode in the fol-

lowing analysis. Fig. 10 shows contours of the velocity per-

turbation amplitude for mode P2 in Taylor–Culick flow. The

black dotted lines are the mean flow streamlines, the rainbow

solid lines are contours of the velocity perturbation amplitude,

and the green/red boxes highlight the local maxima and min-

ima. All of these instability features are consistent with those

identified in previous research16.

An examination of the mean flow streamlines in Fig. 10 re-

veals evidence of flow turning, which arises from a series of

extreme points in the velocity perturbation distribution; such

points are absent in pipe flow. The maximum points, which

are located between the minimum points and the wall, ex-

hibit spatial periodicity in the axial z direction. As mentioned

earlier, the perturbation distribution for Taylor–Culick flow

(Fig. 9b) is concentrated near the wall surface at the down-

stream end of the chamber, at around 7 < z < 8. By contrast,

the perturbation distribution for pipe flow (Fig. 8b) is dis-

tributed more evenly in the radial direction and extends farther

upstream to around z = 6. The mean flow streamlines have

substantial components in the z direction after the minimum

points, indicating that the flow has already turned significantly

even before reaching the central axis itself. We note that the

minimum points sit in the upstream region along the mean

flow streamlines and that the radial velocity decreases down-

stream. This has the effect of reducing the local Reynolds

number and turbulence level after the minimum points, giving

rise to a more stable internal region. Consequently, the flow

on either side of the minimum points exhibits different prop-

erties, leading to the formation of an S-shaped contour in the

perturbation distribution (Fig. 10). Such minimum points are

often referred to as amphidromic points16.

The relationship between flow turning and amphidromic

points can be seen more clearly in the velocity profile.

Fig. 11a and Fig. 12a show the axial growth curves for ve-

locity perturbations in Taylor–Culick flow and in pipe flow,

respectively. In pipe flow (Fig. 12a), the perturbations can be

seen growing exponentially in the axial z direction. In Taylor–

Culick flow (Fig. 11a), however, the existence of amphidromic

points interrupts the exponential growth at a certain radial dis-

tance from the wall surface, but the perturbation evolution out-

side this region remains largely unaffected. This illustrates the

influence of amphidromic points on flow turning.

Figure. 11b and 12b show the radial growth curves for ve-

locity perturbations in Taylor–Culick flow and in pipe flow, re-

spectively. In pipe flow (Fig. 12b), the perturbations contam-

inate the entire domain, forming clear patterns of radial peri-

odicity that extend from the wall surface (outer region) to the

central axis (inner region). In Taylor–Culick flow (Fig. 11b),

however, the existence of amphidromic points divides the lo-

cal flow field into two distinct regions, an outer region with

strong perturbations and an inner region with weak perturba-

tions. This shows that the existence of amphidromic points

limits the inward radial expansion of perturbations.

An inspection of the velocity perturbation streamlines,

shown in Fig. 13, provides further insight into how the am-

phidromic points can weaken the perturbations near the cen-

tral axis at the downstream end of the chamber. It can be seen

that the velocity perturbation streamlines do not develop inter-

nally, as if there were a boundary impeding the propagation of

perturbations. Furthermore, as the flow velocity increases, the

amphidromic points divide the flow field into two regions: an

outer region where surface disturbances arise, and an inner re-

gion where the streamlines resemble those of pipe flow. This

indicates that a boundary layer of perturbations is generated

as a disturbance source.

2. Vortex generation

It is clear that flow turning impairs the propagation of per-

turbations at the downstream end of the chamber. Next we

examine the velocity perturbation vectors in order to better

understand how this mechanism can generate vortices in an

actual flow. Fig. 14 shows the detailed structure of the veloc-

ity perturbation vectors. Patterns of strong periodic advection

can be observed. Although the local advection of velocity per-

turbations cannot generate vortices directly, such disturbances
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FIG. 10: Contours of the velocity perturbation amplitude for mode P2 in Taylor–Culick flow.

(a) Axial growth curve

(b) Radial growth curve

FIG. 11: Growth curve of velocity perturbations in

Taylor–Culick flow:(a) Axial growth curve;(b) Radial growth

curve.

can accumulate in the flow field and change the mean flow.

When combined with the exponential growth of perturbations

in the axial z direction, this phenomenon can enhance local

velocity differences near the wall, particularly at the down-

stream end of the chamber, contributing to increased shear.

Another possible cause of vortices is a change in pressure.

Fig. 15 compares the spatial distribution of pressure pertur-

bations in Taylor–Culick flow and pipe flow. Fig. 16 shows

the axial and radial growth curves for pressure perturbations

in Taylor–Culick flow, while Fig. 17 shows analogous curves

for pipe flow. Far downstream (6 < z < 8), the pressure per-

turbation distribution in Taylor–Culick flow (Fig. 15a) shares

certain features with that in pipe flow (Fig. 15b), such as pat-

terns of axial periodicity that grow in amplitude as the down-

stream distance z increases. However, unlike that in pipe

flow, the pressure perturbation distribution in Taylor–Culick

flow shows little evidence of periodic structures in the radial

direction. Because the radial velocity in pipe flow is zero,

the perturbations can propagate freely, producing high-order

harmonic frequencies associated with symmetric modes. In

Fig. 8, a similar phenomenon was observed in the velocity

perturbation distribution.

As mentioned earlier, the radial velocity in Taylor–Culick

flow decreases rapidly, with amphidromic points dividing the

flow into two distinct regions. In particular, strong pertur-

bations are restricted to the near-wall region, and changes in

the pressure mode arise between the amphidromic points and

the wall itself, as shown in Fig. 16b and Fig. 17b. Fig. 16a

shows the pressure perturbations at different radial locations.

Close to the wall (r = 0.6,0.68,0.84), the pressure pertur-

bations vary significantly, much like the velocity perturba-

tions do (Fig. 11b), whereas those near the central axis (r =
0.1,0.2,0.3) vary to a much lower degree. Fig. 16b captures

the effect of the amphidromic points on the pressure pertur-

bations. The gradient in the pressure perturbations undergoes

a marked change on both sides of the amphidromic points,

which sit at around r = 0.6. The shear stresses generated

by the pressure difference between the two sides of the am-

phidromic points strengthen the advection of velocity pertur-

bations during flow development.

Figure. 18 shows the relationship between pressure and ve-

locity perturbations in Taylor–Culick flow. The pressure per-
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(a) Axial growth curve

(b) Radial growth curve

FIG. 12: Growth curve of velocity perturbations in pipe

flow:(a) Axial growth curve;(b) Radial growth curve.

FIG. 13: Velocity perturbation streamlines for mode P2 in

Taylor–Culick flow.

turbations are represented by contours, while the velocity per-

turbations are represented by vectors. Fig. 18a and Fig. 18c

show the flow fields near two local pressure minima, while

Fig. 18b shows the flow field near a local pressure maxi-

mum between the two pressure minima. In both Fig. 18a

and Fig. 18c, a pronounced back-flow feature can be identi-

fied. Moreover, the pressure and velocity perturbations exhibit

synchronized periodicity, providing direct evidence of parietal

vortex shedding.

An overall negative pressure perturbation field is observed

in Taylor–Culick flow (Fig. 16), but only minor fluctuations

about the equilibrium pressure are observed in pipe flow

(Fig. 17). Furthermore, Fig. 17a shows the emergence of pres-

sure oscillations at the downstream end of pipe flow. This

suggests that the perturbations in Taylor–Culick flow produce

stronger feedback effects on the flow field than those in pipe

flow. To explore this, we show in Fig. 19 the spatial distribu-

tion of vorticity perturbations for mode P2 in Taylor–Culick

flow. It can be seen that the vorticity perturbations fluctuate

along the flow streamlines, reaching a maximum near the wall

at the downstream end of the chamber.

From the discussion above, it is clear that the existence of

amphidromic points in Taylor–Culick flow can cause parietal

vortex shedding in the following way. First, the amphidromic

points confine the downstream flow perturbations to the near-

wall region. Then, the velocity perturbations near the wall

develop periodic advection patterns. Meanwhile, the shear

stresses generated by the pressure difference between the two

sides of the amphidromic points facilitate the formation of

vortices. This explains how vortices can be generated by flow

turning in Taylor–Culick flow.

VI. CONCLUSIONS

In this theoretical study, we have used linear stability anal-

ysis to explore a mechanism for parietal vortex shedding in

Taylor–Culick flow, which is representative of the flow in

SRMs. We used previously published LES data to validate

theoretical predictions of the dominant eigenvalues. We found

that flow turning, which arises from lateral mass injection,

plays a key role in the formation of parietal vortex shedding.

We also found that the amphidromic points, which arise from

flow-turning effects, can divide the flow field into two distinct

regions, an outer region with strong perturbations and an inner

region with weak perturbations. In the outer region, the ve-

locity perturbations were found to develop advection patterns

with axial (streamwise) periodicity. Furthermore, the pres-

sure perturbations were found to induce flow gradients that

increased shear stresses. Together these effects combine to

form a mechanism for the generation of parietal vortex shed-

ding in SRM chambers.
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FIG. 14: Velocity perturbation vectors for mode P2 in Taylor–Culick flow.

(a) Eigenvector of P2 in Taylor–Culick flow

(b) Eigenvector of Branch B1 in pipe flow

FIG. 15: Spatial distribution of pressure perturbations:(a)

Eigenvector of P2 in Taylor–Culick flow;(b) Eigenvector of

Branch B1 in pipe flow.
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