29 research outputs found

    Identification and characterisation of novel SNP markers in Atlantic cod: Evidence for directional selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Atlantic cod (<it>Gadus morhua</it>) is a groundfish of great economic value in fisheries and an emerging species in aquaculture. Genetic markers are needed to identify wild stocks in order to ensure sustainable management, and for marker-assisted selection and pedigree determination in aquaculture. Here, we report on the development and evaluation of a large number of Single Nucleotide Polymorphism (SNP) markers from the alignment of Expressed Sequence Tag (EST) sequences in Atlantic cod. We also present basic population parameters of the SNPs in samples of North-East Arctic cod and Norwegian coastal cod obtained from three different localities, and test for SNPs that may have been targeted by natural selection.</p> <p>Results</p> <p>A total of 17,056 EST sequences were used to find 724 putative SNPs, from which 318 segregating SNPs were isolated. The SNPs were tested on Atlantic cod from four different sites, comprising both North-East Arctic cod (NEAC) and Norwegian coastal cod (NCC). The average heterozygosity of the SNPs was 0.25 and the average minor allele frequency was 0.18. <it>F</it><sub><it>ST </it></sub>values were highly variable, with the majority of SNPs displaying very little differentiation while others had <it>F</it><sub><it>ST </it></sub>values as high as 0.83. The <it>F</it><sub><it>ST </it></sub>values of 29 SNPs were found to be larger than expected under a strictly neutral model, suggesting that these loci are, or have been, influenced by natural selection. For the majority of these outlier SNPs, allele frequencies in a northern sample of NCC were intermediate between allele frequencies in a southern sample of NCC and a sample of NEAC, indicating a cline in allele frequencies similar to that found at the Pantophysin I locus.</p> <p>Conclusion</p> <p>The SNP markers presented here are powerful tools for future genetics work related to management and aquaculture. In particular, some SNPs exhibiting high levels of population divergence have potential to significantly enhance studies on the population structure of Atlantic cod.</p

    A functional SUMO-interacting motif in the transactivation domain of c-Myb regulates its myeloid transforming ability

    Get PDF
    c-Myb is an essential hematopoietic transcription factor that controls proliferation and differentiation of progenitors during blood cell development. Whereas sumoylation of the C-terminal regulatory domain (CRD) is known to have a major impact on the activity of c-Myb, no role for noncovalent binding of small ubiquitin-like modifier (SUMO) to c-Myb has been described. Based on the consensus SUMO-interacting motif (SIM), we identified and examined putative SIMs in human c-Myb. Interaction and reporter assays showed that the SIM in the in the transactivation domain of c-Myb (V 267 NIV) is functional. This motif is necessary for c-Myb to be able to interact noncovalently with SUMO, preferentially SUMO2/3. Destroying the SUMO-binding properties by mutation resulted in a large increase in the transactivation potential of c-Myb. Mutational analysis and overexpression of conjugation-defective SUMO argued against intramolecular repression caused by sumoylated CRD and in favor of SUMO-dependent repression in trans. Using both a myeloid cell line-based assay and a primary hematopoietic cell assay, we addressed the transforming abilities of SUMO binding and conjugation mutants. Interestingly, only loss of SUMO binding, and not SUMO conjugation, enhanced the myeloid transformational potential of c-Myb. c-Myb with the SIM mutated conferred a higher proliferative ability than the wild-type and caused an effective differentiation block. This establishes SUMO binding as a mechanism involved in modulating the transactivation activity of c-Myb, and responsible for keeping the transforming potential of the oncoprotein in check

    Comparison of foot orthoses made by podiatrists, pedorthists and orthotists regarding plantar pressure reduction in The Netherlands

    Get PDF
    BACKGROUND: There is a need for evidence of clinical effectiveness of foot orthosis therapy. This study evaluated the effect of foot orthoses made by ten podiatrists, ten pedorthists and eleven orthotists on plantar pressure and walking convenience for three patients with metatarsalgia. Aims were to assess differences and variability between and within the disciplines. The relationship between the importance of pressure reduction and the effect on peak pressure was also evaluated. METHODS: Each therapist examined all three patients and was asked to rate the 'importance of pressure reduction' through a visual analogue scale. The orthoses were evaluated twice in two sessions while the patient walked on a treadmill. Plantar pressures were recorded with an in-sole measuring system. Patients scored walking convenience per orthosis. The effects of the orthoses on peak pressure reduction were calculated for the whole plantar surface of the forefoot and six regions: big toe and metatarsal one to five. RESULTS: Within each discipline there was an extensive variation in construction of the orthoses and achieved peak pressure reductions. Pedorthists and orthotists achieved greater maximal peak pressure reductions calculated over the whole forefoot than podiatrists: 960, 1020 and 750 kPa, respectively (p < .001). This was also true for the effect in the regions with the highest baseline peak pressures and walking convenience rated by patients A and B. There was a weak relationship between the 'importance of pressure reduction' and the achieved pressure reduction for orthotists, but no relationship for podiatrists and pedorthotists. CONCLUSION: The large variation for various aspects of foot orthoses therapy raises questions about a consistent use of concepts for pressures management within the professional groups

    Glucocortiocoid Treatment of MCMV Infected Newborn Mice Attenuates CNS Inflammation and Limits Deficits in Cerebellar Development

    Get PDF
    Infection of the developing fetus with human cytomegalovirus (HCMV) is a major cause of central nervous system disease in infants and children; however, mechanism(s) of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV) results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC) proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ) in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV

    Rehabilitation and outcome of severe profound deafness in a group of 16 infants affected by congenital cytomegalovirus infection

    No full text
    The aim of the study was to characterize the audiological consequences of congenital cytomegalovirus infection (CMV) and to evaluate the outcome of rehabilitation with hearing aids and/or cochlear implant (CI), associated with an adequate speech-language therapy. A retrospective review of data was made from a total of 16 infants, affected by severe to profound hearing loss from congenital CMV infection, referred to a tertiary audiological center for rehabilitation. Audiological evaluation was performed using behavioral audiometry, auditory brainstem responses (ABR) and/or electrocochleography (ECochG). Of the 16 children (median age at diagnosis of hearing loss: 21.33 +/- 0.7 months) with CMV hearing loss, 14 were affected by profound bilateral hearing loss and received a CI, while 2 were affected by bilateral severe hearing loss and received hearing aids. Cochlear implants can provide useful speech comprehension to patients with CMV-related deafness, even if language development is lower when compared to a group of Connexin (Cx) 26+ cochlear-implanted children (eight subjects), matched for age. Congenital CMV infection still represents a serious clinical condition, as well as an important cause of hearing loss in children. More studies have claimed to identify the pathophysiological mechanisms of damage and thus to ensure a better therapeutic approach. Nonetheless, in cases of CMV-deafened babies, the overall outcome of cochlear implantation is good
    corecore