2,826 research outputs found
Galaxy formation with radiative and chemical feedback
Here we introduce GAMESH, a novel pipeline which implements self-consistent
radiative and chemical feedback in a computational model of galaxy formation.
By combining the cosmological chemical-evolution model GAMETE with the
radiative transfer code CRASH, GAMESH can post process realistic outputs of a
N-body simulation describing the redshift evolution of the forming galaxy.
After introducing the GAMESH implementation and its features, we apply the code
to a low-resolution N-body simulation of the Milky Way formation and we
investigate the combined effects of self-consistent radiative and chemical
feedback. Many physical properties, which can be directly compared with
observations in the Galaxy and its surrounding satellites, are predicted by the
code along the merger-tree assembly. The resulting redshift evolution of the
Local Group star formation rates, reionisation and metal enrichment along with
the predicted Metallicity Distribution Function of halo stars are critically
compared with observations. We discuss the merits and limitations of the first
release of GAMESH, also opening new directions to a full implementation of
feedback processes in galaxy formation models by combining semi-analytic and
numerical methods.Comment: This version has coloured figures not present in the printed version.
Submitted to MNRAS, minor revision
Galactic Halo Stars in Phase Space :A Hint of Satellite Accretion?
The present day chemical and dynamical properties of the Milky Way bear the
imprint of the Galaxy's formation and evolutionary history. One of the most
enduring and critical debates surrounding Galactic evolution is that regarding
the competition between ``satellite accretion'' and ``monolithic collapse'';
the apparent strong correlation between orbital eccentricity and metallicity of
halo stars was originally used as supporting evidence for the latter. While
modern-day unbiased samples no longer support the claims for a significant
correlation, recent evidence has been presented by Chiba & Beers
(2000,AJ,119,2843) for the existence of a minor population of high-eccentricity
metal-deficient halo stars. It has been suggested that these stars represent
the signature of a rapid (if minor) collapse phase in the Galaxy's history.
Employing velocity- and integrals of motion-phase space projections of these
stars, coupled with a series of N-body/Smoothed Particle Hydrodynamic (SPH)
chemodynamical simulations, we suggest an alternative mechanism for creating
such stars may be the recent accretion of a polar orbit dwarf galaxy.Comment: 12 pages(incl. figures). Accepted for publication in ApJ letters
sectio
Orbits of radial migrators and non-migrators around a spiral arm in N-body simulations
Recent numerical N-body simulations of spiral galaxies have shown that spiral arms in N-body simulations do not rotate rigidly as expected in classic density wave theory, but instead seem to rotate at a similar speed to the local rotation speed of the stellar disc material. This in turn yields winding, transient and recurrent spiral structure, whose co-rotating nature gives rise to changes in the angular momentum (radial migration) of star particles close to the spiral arm at many radii. From high resolution N-body simulations, we highlight the evolution of strongly migrating star particles (migrators) and star particles that do not migrate (non-migrators) around a spiral arm. We investigate the individual orbit histories of migrators and non-migrators and find that there are several types of migrator and non-migrator, each with unique radial evolution. We find the important quantities that affect the orbital evolution to be the radial and tangential velocity components in combination with the azimuthal distance to the spiral arm at the time the star particle begins to feel tangential force. We contrast each type of orbit to compare how these factors combine for migrators and non-migrators. We find that the positive (negative) migrators sustain a position behind (in front of) the spiral arm, and feel continuous tangential force as long as the spiral arm persists. This is because the positive (negative) migrators are close to the apocentre (pericentre) epicycle phase during their migration, and rotate slower (faster) than the co-rotating spiral arm. On the other hand, non-migrators stay close to the spiral arm, and pass or are passed by the spiral arm one or two times. Although they gain or lose the angular momentum when they are behind or in front of the spiral arm, their net angular momentum change becomes close to zero
Monte Carlo Simulation of Secondary Electron Emission From Thin Film/Substrate Targets
We have developed a Monte Carlo simulation model of secondary electron emission from thin film/substrate samples, taking into consideration their exact boundary condition. First, the validity of the model is checked in comparison with the experimental data reported such as the secondary electron emission and backscattering yields from thick Al, thick Au targets and Al thin films on a Au substrate, the energy distribution of secondary electrons, and the contribution of backscattering to the secondary electron emission yield. The agreement is relatively good. Next, we have applied the model to the secondary electron emission from Au films on an Al substrate. It has been found from the calculated results of the spatial distribution of secondary electrons that the Au film coating increases the background intensity and deteriorates resolution in the secondary electron image formation
Stellar Motion around Spiral Arms: Gaia Mock Data
We compare the stellar motion around a spiral arm created in two different
scenarios, transient/co-rotating spiral arms and density-wave-like spiral arms.
We generate Gaia mock data from snapshots of the simulations following these
two scenarios using our stellar population code, SNAPDRAGONS, which takes into
account dust extinction and the expected Gaia errors. We compare the observed
rotation velocity around a spiral arm similar in position to the Perseus arm,
and find that there is a clear difference in the velocity features around the
spiral arm between the co-rotating spiral arm and the density-wave-like spiral
arm. Our result demonstrates that the volume and accuracy of the Gaia data are
sufficient to clearly distinguish these two scenarios of the spiral arms.Comment: 5 pages, 1 figure, to appear in the proceedings of "The Milky Way
Unravelled by Gaia: GREAT Science from the Gaia Data Releases", Barcelona,
1-5 December 2014, eds. N. Walton, F. Figueras, C. Soubira
A High-Resolution Compton Scattering Study of the Electron Momentum Density in Al
We report high-resolution Compton profiles (CP's) of Al along the three
principal symmetry directions at a photon energy of 59.38 keV, together with
corresponding highly accurate theoretical profiles obtained within the
local-density approximation (LDA) based band-theory framework. A good accord
between theory and experiment is found with respect to the overall shapes of
the CP's, their first and second derivatives, as well as the anisotropies in
the CP's defined as differences between pairs of various CP's. There are
however discrepancies in that, in comparison to the LDA predictions, the
measured profiles are lower at low momenta, show a Fermi cutoff which is
broader, and display a tail which is higher at momenta above the Fermi
momentum. A number of simple model calculations are carried out in order to
gain insight into the nature of the underlying 3D momentum density in Al, and
the role of the Fermi surface in inducing fine structure in the CP's. The
present results when compared with those on Li show clearly that the size of
discrepancies between theoretical and experimental CP's is markedly smaller in
Al than in Li. This indicates that, with increasing electron density, the
conventional picture of the electron gas becomes more representative of the
momentum density and that shortcomings of the LDA framework in describing the
electron correlation effects become less important.Comment: 7 pages, 6 figures, regular articl
Evolution of planetary nebulae II. Population effects on the bright cut-off of the PNLF
We investigate the bright cut-off of the [OIII]l5007 planetary nebula
luminosity function (PNLF), that has been suggested as a powerful extragalactic
distance indicator. Theoretical PNLFs are constructed via Monte-Carlo
simulations of populations of PNe, whose individual properties are described
with the aid of recent PN synthetic models (Marigo et al. 2001), coupled to a
detailed photoionisation code (CLOUDY). The basic dependences of the cut-off
magnitude M* are then discussed. We find that: (i) In galaxies with recent or
ongoing star formation, the modelled PNLF present M* values between -4 and -5,
very close to the observationally-calibrated value for the LMC. (ii) In these
galaxies, the PNLF cut-off is produced by PNe with progenitor masses of about
2.5 Msun, while less massive stars give origin to fainter PNe. As a consequence
M* is expected to depend strongly on the age of the last burst of star
formation, dimming by as much as 5 mag as we go from young to 10-Gyr old
populations. (iii) Rather than on the initial metallicity of a stellar
population, M* depends on the actual [O/H] of the observed PNe, a quantity that
may differ significantly from the initial value (due to dredge-up episodes),
especially in young and intermediate-age PN populations. (iv) Also the
transition time from the end of AGB to the PN phase, and the nuclear-burning
properties (i.e. H- or He-burning) of the central stars introduce
non-negligible effects on M*. The strongest indication derived from the present
calculations is a serious difficulty to explain the age-invariance of the
cut-off brightness over an extended interval, say from 1 to 13 Gyr, that
observations of PNLFs in galaxies of late-to-early type seem to suggest.Comment: 22 pages, to appear in Astronomy & Astrophysic
- …