Here we introduce GAMESH, a novel pipeline which implements self-consistent
radiative and chemical feedback in a computational model of galaxy formation.
By combining the cosmological chemical-evolution model GAMETE with the
radiative transfer code CRASH, GAMESH can post process realistic outputs of a
N-body simulation describing the redshift evolution of the forming galaxy.
After introducing the GAMESH implementation and its features, we apply the code
to a low-resolution N-body simulation of the Milky Way formation and we
investigate the combined effects of self-consistent radiative and chemical
feedback. Many physical properties, which can be directly compared with
observations in the Galaxy and its surrounding satellites, are predicted by the
code along the merger-tree assembly. The resulting redshift evolution of the
Local Group star formation rates, reionisation and metal enrichment along with
the predicted Metallicity Distribution Function of halo stars are critically
compared with observations. We discuss the merits and limitations of the first
release of GAMESH, also opening new directions to a full implementation of
feedback processes in galaxy formation models by combining semi-analytic and
numerical methods.Comment: This version has coloured figures not present in the printed version.
Submitted to MNRAS, minor revision