4,122 research outputs found

    Hawkmoths Produce Anti-Bat Ultrasound

    Get PDF
    Bats and moths have been engaged in aerial warfare for nearly 65 Myr. This arms race has produced a suite of counter-adaptations in moths, including bat-detecting ears. One set of defensive strategies involves the active production of sound; tiger moths\u27 ultrasonic replies to bat attack have been shown to startle bats, warn the predators of bad taste and jam their biosonar. Here, we report that hawkmoths in the Choerocampina produce entirely ultrasonic sounds in response to tactile stimulation and the playback of biosonar attack sequences. Males do so by grating modified scraper scales on the outer surface of the genital valves against the inner margin of the last abdominal tergum. Preliminary data indicate that females also produce ultrasound to touch and playback of echolocation attack, but they do so with an entirely different mechanism. The anti-bat function of these sounds is unknown but might include startling, cross-family acoustic mimicry, warning of unprofitability or physical defence and/or jamming of echolocation. Hawkmoths present a novel and tractable system to study both the function and evolution of anti-bat defences

    Monte Carlo Studies of the GWW Phase Transition in Large-N Gauge Theories

    Get PDF
    In the study of the small ten-dimensional Schwarzschild blackhole, the blackhole to string transition is an important problem. In hep-th/0605041, a possible identification is made between the Gross-Witten-Wadia (GWW) type third-order large-N phase transition in the boundary gauge theory and the string-black hole transition in the bulk. In this paper, we exhibit the existence of the GWW transition by Monte Carlo simulation in the zero mode bosonic action of the finite-temperature N=4 SYM theory on S^3. Exhibiting this transition in the truncated but highly non-trivial gauge theory implies that in the vicinity of the critical temperature T_c, the system goes critical, and the fluctuations give rise to universal formulas derived in hep-th/0605041 We also discuss the issue of SO(6) R-symmetry breaking.Comment: 15 pages, 7 figures, eq. (3.10) corrected (v3), reference added (v4

    Exact fuzzy sphere thermodynamics in matrix quantum mechanics

    Full text link
    We study thermodynamical properties of a fuzzy sphere in matrix quantum mechanics of the BFSS type including the Chern-Simons term. Various quantities are calculated to all orders in perturbation theory exploiting the one-loop saturation of the effective action in the large-N limit. The fuzzy sphere becomes unstable at sufficiently strong coupling, and the critical point is obtained explicitly as a function of the temperature. The whole phase diagram is investigated by Monte Carlo simulation. Above the critical point, we obtain perfect agreement with the all order results. In the region below the critical point, which is not accessible by perturbation theory, we observe the Hagedorn transition. In the high temperature limit our model is equivalent to a totally reduced model, and the relationship to previously known results is clarified.Comment: 22 pages, 14 figures, (v2) some typos correcte

    Confirming the Detection of an Intergalactic X-ray Absorber Toward PKS 2155-304

    Full text link
    We present new observations on PKS 2155-304 with the Chandra Low Energy Transmission Grating Spectrometer (LETG), using the Advanced CCD Imaging Spectrometer (ACIS). We confirm the detection of an absorption line plausibly identified as OVIII Ly-alpha from the warm-hot intergalactic medium associated with a small group of galaxies along the line of sight, as originally reported by Fang et al. 2002 (here after FANG02). Combining the previous observations in FANG02 and five new, long observations on the same target, we increase the total exposure time by a factor of three, and the total counts per resolution element by a factor of five. The measured line equivalent width is smaller than that observed in FANG02, but still consistent at 90% confidence. We also analyze the XMM-Newton observations on the same target, as well as observations using the Chandra LETG and the High Resolution Camera (HRC) combination. These observations have been used to challenge our reported detection. While no line is seen in either the XMM-Newton and the Chandra LETG+HRC data, we find that our result is consistent with the upper limits from both data sets. We attribute the non-detection to (1) higher quality of the Chandra LETG+ACIS spectrum, and (2) the rather extended wings of the line spread functions of both the XMM RGS and the Chandra LETG+HRC. We discuss the implication of our observation on the temperature and density of the absorber. We also confirm the detection of z ~ 0 OVII absorption and, comparing with previous Chandra analysis, we obtain much tighter constraints on the line properties.Comment: 10 pages, 8 figures, accepted for publication in Ap

    Cascade of Gregory-Laflamme Transitions and U(1) Breakdown in Super Yang-Mills

    Full text link
    In this paper we consider black p-branes on square torus. We find an indication of a cascade of Gregory-Laflamme transitions between black p-brane and (p-1)-brane. Through AdS/CFT correspondence, these transitions are related to the breakdown of the U(1) symmetry in super Yang-Mills on torus. We argue a relationship between the cascade and recent Monte-Carlo data.Comment: 15 pages, 3 figures, LaTeX, v2: comments and references added, v3: minor changes and a reference adde

    Systematic Errors in the Hubble Constant Measurement from the Sunyaev-Zel'dovich effect

    Full text link
    The Hubble constant estimated from the combined analysis of the Sunyaev-Zel'dovich effect and X-ray observations of galaxy clusters is systematically lower than those from other methods by 10-15 percent. We examine the origin of the systematic underestimate using an analytic model of the intracluster medium (ICM), and compare the prediction with idealistic triaxial models and with clusters extracted from cosmological hydrodynamical simulations. We identify three important sources for the systematic errors; density and temperature inhomogeneities in the ICM, departures from isothermality, and asphericity. In particular, the combination of the first two leads to the systematic underestimate of the ICM spectroscopic temperature relative to its emission-weighed one. We find that these three systematics well reproduce both the observed bias and the intrinsic dispersions of the Hubble constant estimated from the Sunyaev-Zel'dovich effect.Comment: 26 pages, 7 figures, accepted for publication in ApJ, Minor change

    SuzakuSuzaku X-ray study of the double radio relic galaxy cluster CIZA J2242.8+5301

    Get PDF
    Content: We present the results from SuzakuSuzaku observations of the merging cluster of galaxies CIZA J2242.8+5301 at zz=0.192. Aims. To study the physics of gas heating and particle acceleration in cluster mergers, we investigated the X-ray emission from CIZA J2242.8+5301, which hosts two giant radio relics in the northern/southern part of the cluster. Methods. We analyzed data from three-pointed Suzaku observations of CIZA J2242.8+5301 to derive the temperature distribution in four different directions. Results: The Intra-Cluster Medium (ICM) temperature shows a remarkable drop from 8.50.6+0.8_{-0.6}^{+0.8} keV to 2.70.4+0.7_{-0.4}^{+0.7} keV across the northern radio relic. The temperature drop is consistent with a Mach number Mn=2.70.4+0.7{\cal M}_n=2.7^{+0.7}_{-0.4} and a shock velocity vshock:n=2300400+700kms1v_{shock:n}=2300_{-400}^{+700}\rm\,km\,s^{-1}. We also confirm the temperature drop across the southern radio relic. However, the ICM temperature beyond this relic is much higher than beyond the northern one, which gives a Mach number Ms=1.70.3+0.4{\cal M}_s=1.7^{+0.4}_{-0.3} and shock velocity vshock:s=2040410+550kms1v_{shock:s}=2040_{-410}^{+550}\rm \,km\,s^{-1}. These results agree with other systems showing a relationship between the radio relics and shock fronts which are induced by merging activity. We compare the X-ray derived Mach numbers with the radio derived Mach numbers from the radio spectral index under the assumption of diffusive shock acceleration in the linear test particle regime. For the northern radio relic, the Mach numbers derived from X-ray and radio observations agree with each other. Based on the shock velocities, we estimate that CIZA J2242.8+5301 is observed approximately 0.6 Gyr after core passage. The magnetic field pressure at the northern relic is estimated to be 9% of the thermal pressure.Comment: 12 pages, 10 figures, A&A accepte

    Extracting Galaxy Cluster Gas Inhomogeneity from X-ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    Full text link
    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal distribution. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the density fluctuations and the X-ray surface brightness. We analyze \chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of two from their X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three dimensional inhomogeneity in galaxy clusters.Comment: 34 pages, 17 figures, accepted for publication in Ap

    Quantifying Wing Shape and Size of Saturniid Moths with Geometric Morphometrics

    Get PDF
    Butterflies and moths exhibit a spectacular diversity of w in g sh ape and size. The extent of wing variation is particularly evident in wild silk moths (Saturniidae), which have large wing shape and size variation. Some species have jagged wing margins, rounded forewing apical lobes, or narrow hind wings with long tails, while others lack these traits entirely. Surprisingly, very little work has been done to formally quantify wing variation within the family. We analyzed the hind wing shape and size of 76 saturniid species representing 52 genera across five subfamilies using geometric morphometrics. We identified fifteen landmarks that we predict can be applied to families across Lepidoptera. PCA analyses grouped saturniid hind wings into six distinct morphological clusters. These groups did not appear to follow species relatedness—some phylogenetically and genetically distantly related taxa clustered in the same morphological group. We discuss ecological factors that might have led to the extraordinary wing variation within Saturniidae

    Radial velocity eclipse mapping of exoplanets

    Get PDF
    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLauglin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blue-shifted) or receding (red-shifted) parts of the planet causes a temporal distortion in the planet's spectral line profiles resulting in an anomaly in the planet's radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt and impact factor (i.e. sky-projected planet spin-orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ on 2015 June 1
    corecore