238 research outputs found
Error analysis for station position from tracking of the Lageos satellite
The earth physics satellite systems error analysis program was applied to the problem of predicting the relative accuracy of station position determinations under varying orbital and observing geometries. The reference case consists of nine ground stations extending over 1500 km which lasers ranged to a LAGEOS satellite, with simultaneous Doppler tracking from a geosynchronous satellite for 16 days. Eleven variations from the reference case were tested. The results showed little sensitivity to whether the LAGEOS altitude is 3700 or 5690 km. More significant were the high inclination, and that LAGEOS was tracked by a geosynchronous satellite
Report of the Terrestrial Bodies Science Working Group. Volume 3: Venus
The science objectives of Pioneer Venus and future investigations of the planet are discussed. Concepts and payloads for proposed missions and the supporting research and technology required to obtain the desired measurements from space and Earth-based observations are examined, as well as mission priorities and schedules
Does prediction error drive one-shot declarative learning?
The role of prediction error (PE) in driving learning is well-established in fields such as classical and instrumental conditioning, reward learning and procedural memory; however, its role in human one-shot declarative encoding is less clear. According to one recent hypothesis, PE reflects the divergence between two probability distributions: one reflecting the prior probability (from previous experiences) and the other reflecting the sensory evidence (from the current experience). Assuming unimodal probability distributions, PE can be manipulated in three ways: (1) the distance between the mode of the prior and evidence, (2) the precision of the prior, and (3) the precision of the evidence. We tested these three manipulations across five experiments, in terms of peoples' ability to encode a single presentation of a scene-item pairing as a function of previous exposures to that scene and/or item. Memory was probed by presenting the scene together with three choices for the previously paired item, in which the two foil items were from other pairings within the same condition as the target item. In Experiment 1, we manipulated the evidence to be either consistent or inconsistent with prior expectations, predicting PE to be larger, and hence memory better, when the new pairing was inconsistent. In Experiments 2a-c, we manipulated the precision of the priors, predicting better memory for a new pairing when the (inconsistent) priors were more precise. In Experiment 3, we manipulated both visual noise and prior exposure for unfamiliar faces, before pairing them with scenes, predicting better memory when the sensory evidence was more precise. In all experiments, the PE hypotheses were supported. We discuss alternative explanations of individual experiments, and conclude the Predictive Interactive Multiple Memory Signals (PIMMS) framework provides the most parsimonious account of the full pattern of results
On the effects of the Dvali-Gabadadze-Porrati braneworld gravity on the orbital motion of a test particle
In this paper we explicitly work out the secular perturbations induced on all
the Keplerian orbital elements of a test body to order O(e^2) in the
eccentricity e by the weak-field long-range modifications of the usual
Newton-Einstein gravity due to the Dvali-Gabadadze-Porrati (DGP) braneworld
model. The Gauss perturbative scheme is used. It turns out that the argument of
pericentre and the mean anomaly are affected by secular rates which are
independent of the semimajor axis of the orbit of the test particle. The first
nonvaishing eccentricity-dependent corrections are of order O(e^2). For
circular orbits the Lue-Starkman (LS) effect on the pericentre is obtained.
Some observational consequences are discussed for the Solar System planetary
mean longitudes lambda which would undergo a 1.2\cdot 10^-3 arcseconds per
century braneworld secular precession. According to recent data analysis over
92 years for the EPM2004 ephemerides, the 1-sigma formal accuracy in
determining the Martian mean longitude amounts to 3\cdot 10^-3 milliarcseconds,
while the braneworld effect over the same time span would be 1.159
milliarcseconds. The major limiting factor is the 2.6\cdot 10^-3 arcseconds per
century systematic error due to the mismodelling in the Keplerian mean motion
of Mars. A suitable linear combination of the mean longitudes of Mars and Venus
may overcome this problem. The formal, 1-sigma obtainable observational
accuracy would be \sim 7%. The systematic error due to the present-day
uncertainties in the solar quadrupole mass moment, the Keplerian mean motions,
the general relativistic Schwarzschild field and the asteroid ring would amount
to some tens of percent.Comment: LaTex2e, 23 pages, 5 tables, 1 figure, 37 references. Second-order
corrections in eccentricity explicitly added. Typos corrected. References
update
Report of the panel on geopotential fields: Gravity field, section 8
The objective of the Geopotential Panel was to develop a program of data acquisition and model development for the Earth's gravity and magnetic fields that meet the basic science requirements of the solid Earth and ocean studies. Presented here are the requirements for gravity information and models through the end of the century, the present status of our knowledge, data acquisition techniques, and an outline of a program to meet the requirements
On the oscillations in Mercury's obliquity
One major objective of MESSENGER and BepiColombo spatial missions is to
accurately measure Mercury's rotation and its obliquity in order to obtain
constraints on internal structure of the planet. Which is the obliquity's
dynamical behavior deriving from a complete spin-orbit motion of Mercury
simultaneously integrated with planetary interactions? We have used our SONYR
model integrating the spin-orbit N-body problem applied to the solar System
(Sun and planets). For lack of current accurate observations or ephemerides of
Mercury's rotation, and therefore for lack of valid initial conditions for a
numerical integration, we have built an original method for finding the
libration center of the spin-orbit system and, as a consequence, for avoiding
arbitrary amplitudes in librations of the spin-orbit motion as well as in
Mercury's obliquity. The method has been carried out in two cases: (1) the
spin-orbit motion of Mercury in the 2-body problem case (Sun-Mercury) where an
uniform precession of the Keplerian orbital plane is kinematically added at a
fixed inclination (S2K case), (2) the spin-orbit motion of Mercury in the
N-body problem case (Sun and planets) (Sn case). We find that the remaining
amplitude of the oscillations in the Sn case is one order of magnitude larger
than in the S2K case, namely 4 versus 0.4 arcseconds (peak-to-peak). The mean
obliquity is also larger, namely 1.98 versus 1.80 arcminutes, for a difference
of 10.8 arcseconds. These theoretical results are in a good agreement with
recent radar observations but it is not excluded that it should be possible to
push farther the convergence process by drawing nearer still more precisely to
the libration center.Comment: 30 pages, 3 tables, 8 figures, accepted to Icarus (26 Jul 2007
On the Measurement of the Lense-Thirring effect Using the Nodes of the LAGEOS Satellites in reply to "On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites" by L. Iorio
In this paper, we provide a detailed description of our recent analysis and
determination of the frame-dragging effect obtained using the nodes of the
satellites LAGEOS and LAGEOS 2, in reply to the paper "On the reliability of
the so-far performed tests for measuring the Lense-Thirring effect with the
LAGEOS satellites" by L. IorioComment: Added: the precise references to the the ArXiv papers of L. Iorio:
gr-qc/0411024 v9 19 Apr 2005 and gr-qc/0411084 v5 19 Apr 2005, explicitly
containing his proposal to use the mean anomal
On a new observable for measuring the Lense-Thirring effect with Satellite Laser Ranging
In this paper we present a rather extensive error budget for the difference
of the perigees of a pair of supplementary SLR satellites aimed to the
detection of the Lense-Thirring effect.Comment: LaTex2e, 14 pages, 1 table, no figures. Some changes and additions to
the abstract, Introduction and Conclusions. References updated, typos
corrected. Equation corrected. To appear in General Relativity and
Gravitatio
Measuring the relativistic perigee advance with Satellite Laser Ranging
One of the most famous classical tests of General Relativity is the
gravitoelectric secular advance of the pericenter of a test body in the
gravitational field of a central mass. In this paper we explore the possibility
of performing a measurement of the gravitoelectric pericenter advance in the
gravitational field of the Earth by analyzing the laser-ranged data to some
existing, or proposed, laser-ranged geodetic satellites. At the present level
of knowledge of various error sources, the relative precision obtainable with
the data from LAGEOS and LAGEOS II, suitably combined, is of the order of
. Nevertheless, these accuracies could sensibly be improved in the
near future when the new data on the terrestrial gravitational field from the
CHAMP and GRACE missions will be available. The use of the perigee of LARES
(LAser RElativity Satellite), in the context of a suitable combination of
orbital residuals including also LAGEOS II, should further raise the precision
of the measurement. As a secondary outcome of the proposed experiment, with the
so obtained value of \ppn and with \et=4\beta-\gamma-3 from Lunar Laser
Ranging it could be possible to obtain an estimate of the PPN parameters
and at the level.Comment: LaTex2e, 14 pages, no figures, 2 tables. To appear in Classical and
Quantum Gravit
On the Possibility of Measuring the Gravitomagnetic Clock Effect in an Earth Space-Based Experiment
In this paper the effect of the post-Newtonian gravitomagnetic force on the
mean longitudes of a pair of counter-rotating Earth artificial satellites
following almost identical circular equatorial orbits is investigated. The
possibility of measuring it is examined. The observable is the difference of
the times required to in passing from 0 to 2 for both senses of
motion. Such gravitomagnetic time shift, which is independent of the orbital
parameters of the satellites, amounts to 5 s for Earth; it is
cumulative and should be measured after a sufficiently high number of
revolutions. The major limiting factors are the unavoidable imperfect
cancellation of the Keplerian periods, which yields a constraint of 10
cm in knowing the difference between the semimajor axes of the satellites,
and the difference of the inclinations of the orbital planes which, for
, should be less than . A pair of spacecrafts
endowed with a sophisticated intersatellite tracking apparatus and drag-free
control down to 10 cm s Hz level might allow to meet
the stringent requirements posed by such a mission.Comment: LaTex2e, 22 pages, no tables, 1 figure, 38 references. Final version
accepted for publication in Classical and Quantum Gravit
- …