12 research outputs found

    Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993

    No full text

    Search for top squark production in fully hadronic final states in proton-proton collisions at s =13 TeV

    No full text
    © 2021 CERN. for the CMS Collaboration.A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb-1. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state

    Observation of triple J/ψ meson production in proton-proton collisions

    No full text
    Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272−104+141(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process

    Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at root s=13 TeV

    No full text
    A search for nonresonant production of Higgs boson pairs via gluon-gluon and vector boson fusion processes in final states with two bottom quarks and two photons is presented. The search uses data from proton-proton collisions at a center-of-mass energy of root s = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb(-1). No significant deviation from the background-only hypothesis is observed. An upper limit at 95% confidence level is set on the product of the Higgs boson pair production cross section and branching fraction into gamma gamma b (b) over bar. The observed (expected) upper limit is determined to be 0.67 (0.45) fb, which corresponds to 7.7 (5.2) times the standard model prediction. This search has the highest sensitivity to Higgs boson pair production to date. Assuming all other Higgs boson couplings are equal to their values in the standard model, the observed coupling modifiers of the trilinear Higgs boson self-coupling kappa(lambda) and the coupling between a pair of Higgs bosons and a pair of vector bosons c(2V) are constrained within the ranges -3.3 < kappa(lambda) < 8.5 and -1.3 < c(2V) < 3.5 at 95% confidence level. Constraints on kappa(lambda) are also set by combining this analysis with a search for single Higgs bosons decaying to two photons, produced in association with top quark-antiquark pairs, and by performing a simultaneous fit of kappa(lambda) and the top quark Yukawa coupling modifier kappa(t)

    Search for narrow resonances in the <math display="inline"><mi>b</mi></math>-tagged dijet mass spectrum in proton-proton collisions at <math display="inline"><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>13</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></math>

    No full text
    International audienceA search is performed for narrow resonances decaying to final states of two jets, with at least one jet originating from a b quark, in proton-proton collisions at s=13  TeV. The data set corresponds to an integrated luminosity of 138  fb-1 collected with the CMS detector at the LHC. Jets originating from energetic b hadrons are identified through a b-tagging algorithm that utilizes a deep neural network or the presence of a muon inside a jet. The invariant mass spectrum of jet pairs is well described by a smooth parametrization and no evidence for the production of new particles is observed. Upper limits on the production cross section are set for excited b quarks and other resonances decaying to dijet final states containing b quarks. These limits exclude at 95% confidence level models of Zâ€Č bosons with masses from 1.8 TeV to 2.4 TeV and of excited b quarks with masses from 1.8 TeV to 4.0 TeV. This is the most stringent exclusion of excited b quarks to date

    Strange hadron collectivity in pPb and PbPb collisions

    Get PDF
    Abstract The collective behavior of K S 0 KS0 {\textrm{K}}_{\textrm{S}}^0 and Λ / Λ ÂŻ Λ/Λ‟ \Lambda /\overline{\Lambda} strange hadrons is studied by measuring the elliptic azimuthal anisotropy (v 2) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy s NN sNN \sqrt{s_{\textrm{NN}}} = 8.16 TeV and lead-lead (PbPb) collisions at s NN sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20 GeV is present. The strange hadron v 2 values extracted in pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size
    corecore