12,268 research outputs found

    Near- to mid-infrared picosecond optical parametric oscillator based on periodically poled RbTiOAsO4

    Get PDF
    We describe a Ti:sapphire-pumped picosecond optical parametric oscillator based on periodically poled RbTiOAsO4 that is broadly tunable in the near to mid infrared. A 4.5-mm single-grating crystal at room temperature in combination with pump wavelength tuning provided access to a continuous-tuning range from 3.35 to 5 mu m, and a pump power threshold of 90 mW was measured. Average mid-infrared output powers in excess of 100 mW and total output powers of 400 mW in similar to 1-ps pulses were obtained at 33% extraction efficiency. (C) 1998 Optical Society of America.</p

    Extensive ssDNA end formation at DNA double-strand breaks in non-homologous end-joining deficient cells during the S phase

    Get PDF
    BACKGROUND: Efficient and correct repair of DNA damage, especially DNA double-strand breaks, is critical for cellular survival. Defects in the DNA repair may lead to cell death or genomic instability and development of cancer. Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks in mammalian cells. The ability of other repair pathways, such as homologous recombination, to compensate for loss of NHEJ and the ways in which contributions of different pathways are regulated are far from fully understood. RESULTS: In this report we demonstrate that long single-stranded DNA (ssDNA) ends are formed at radiation-induced DNA double-strand breaks in NHEJ deficient cells. At repair times ≥ 1 h, processing of unrejoined DNA double-strand breaks generated extensive ssDNA at the DNA ends in cells lacking the NHEJ protein complexes DNA-dependent protein kinase (DNA-PK) or DNA Ligase IV/XRCC4. The ssDNA formation was cell cycle dependent, since no ssDNA ends were observed in G(1)-synchronized NHEJ deficient cells. Furthermore, in wild type cells irradiated in the presence of DNA-PKcs (catalytic subunit of DNA-PK) inhibitors, or in DNA-PKcs deficient cells complemented with DNA-PKcs mutated in six autophosphorylation sites (ABCDE), no ssDNA was formed. The ssDNA generation also greatly influences DNA double-strand break quantification by pulsed-field gel electrophoresis, resulting in overestimation of the DNA double-strand break repair capability in NHEJ deficient cells when standard protocols for preparing naked DNA (i. e., lysis at 50°C) are used. CONCLUSION: We provide evidence that DNA Ligase IV/XRCC4 recruitment by DNA-PK to DNA double-strand breaks prevents the formation of long ssDNA ends at double-strand breaks during the S phase, indicating that NHEJ components may downregulate an alternative repair process where ssDNA ends are required

    Carbon and oxygen isotope composition of carbonates from an L6 chondrite: Evidence for terrestrial weathering from the Holbrook meteorite

    Get PDF
    Terrestrial weathering in meteorites is an important process which alters pristine elemental and isotopic abundances. The Holbrook L6 chondrite fell in 1912. Material was recovered at the time of the fall, in 1931, and 1968. The weathering processes operating on the freshly fallen meteorite in a semi-arid region of northeastern Arizona have been studied after a ground residence of 19 and 56 years. It has been shown that a large portion of the carbonate material in 7 Antarctic ordinary chondrites either underwent extensive isotopic exchange with atmospheric CO2, or formed recently in the Antarctic environment. In fact it has been demonstrated that hydrated Mg-carbonates, nesquehonite and hydromagnesite, formed in less than 40 years on LEW 85320. In order to help further constrain the effects of terrestrial weathering in meteorites, the carbon and oxygen isotopes extracted from carbonates of three different samples of Holbrook L6: a fresh sample at the time of the fall in 1912, a specimen collected in 1931, and a third specimen collected at the same site in 1968

    The Distribution of Redshifts in New Samples of Quasi-stellar Objects

    Get PDF
    Two new samples of QSOs have been constructed from recent surveys to test the hypothesis that the redshift distribution of bright QSOs is periodic in log(1+z)\log(1+z). The first of these comprises 57 different redshifts among all known close pairs or multiple QSOs, with image separations \leq 10\arcsec, and the second consists of 39 QSOs selected through their X-ray emission and their proximity to bright comparatively nearby active galaxies. The redshift distributions of the samples are found to exhibit distinct peaks with a periodic separation of 0.089\sim 0.089 in log(1+z)\log(1+z) identical to that claimed in earlier samples but now extended out to higher redshift peaks z=2.63,3.45z = 2.63, 3.45 and 4.47, predicted by the formula but never seen before. The periodicity is also seen in a third sample, the 78 QSOs of the 3C and 3CR catalogues. It is present in these three datasets at an overall significance level 10510^{-5} - 10610^{-6}, and appears not to be explicable by spectroscopic or similar selection effects. Possible interpretations are briefly discussed.Comment: submitted for publication in the Astronomical Journal, 15 figure

    How Much Does Money Matter in a Direct Democracy?

    Get PDF
    The fine-structure splitting of quantum confined InxGa1-x Nexcitons is investigated using polarization-sensitive photoluminescence spectroscopy. The majority of the studied emission lines exhibits mutually orthogonal fine-structure components split by 100-340 mu eV, as measured from the cleaved edge of the sample. The exciton and the biexciton reveal identical magnitudes but reversed sign of the energy splitting.Original Publication:Supaluck Amloy, Y T Chen, K F Karlsson, K H Chen, H C Hsu, C L Hsiao, L C Chen and Per-Olof Holtz, Polarization-resolved fine-structure splitting of zero-dimensional InxGa1-xN excitons, 2011, PHYSICAL REVIEW B, (83), 20, 201307.http://dx.doi.org/10.1103/PhysRevB.83.201307Copyright: American Physical Societyhttp://www.aps.org

    Parameterization of the Angular Distribution of Gamma Rays Produced by p-p Interaction in Astronomical Environment

    Get PDF
    We present the angular distribution of gamma rays produced by proton-proton interactions in parameterized formulae to facilitate calculations in astrophysical environments. The parameterization is derived from Monte Carlo simulations of the up-to-date proton-proton interaction model by Kamae et al. (2005) and its extension by Kamae et al. (2006). This model includes the logarithmically rising inelastic cross section, the diffraction dissociation process and Feynman scaling violation. The extension adds two baryon resonance contributions: one representing the Delta(1232) and the other representing multiple resonances around 1600 MeV/c^2. We demonstrate the use of the formulae by calculating the predicted gamma-ray spectrum for two different cases: the first is a pencil beam of protons following a power law and the second is a fanned proton jet with a Gaussian intensity profile impinging on the surrounding material. In both cases we find that the predicted gamma-ray spectrum to be dependent on the viewing angle.Comment: 8 pages, 7 figures, figure 7 updated, accepted for publication in ApJ, text updated to match changes by the editor, two refs updated from preprints to full journal

    Theoretical calculation of photodetachment intensities for H3O−

    Get PDF
    This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/105/13/10.1063/1.472380.We have calculated total and arrangement‐selected photodetachment intensities for the H3O− anion (and its deuterated form, D3O−) using a Green’s function in a discrete variable representation with absorbing boundary conditions. A multiply‐shifted quasiminimal residual method is used to obtain the Green’s function for many energies at once. We present spectra obtained by explicitly treating two and four degrees of freedom. Comparison with experiment indicates that the bending angles in the anion and neutral are more similar than in the current potential energy surfaces. The calculated spectra are also consistent with the suggestion that the barrier should be ‘‘earlier.’
    corecore