1,280 research outputs found

    Editorial: Rising stars in microbial physiology and metabolism: 2022

    Get PDF
    This Research Topic was initiated to highlight work by young authors, the rising stars in the field of microbial physiology and metabolism. Microbial physiology and metabolism is an interdisciplinary field of research that seeks to uncover how the metabolic pathways of a cell work together to determine cell fate and function, whether that be growth, replication, pathogenicity, predation, respiration and fermentation, homeostasis or death. Ultimately, researchers like the ones featured here seek to integrate biological information and physicochemical parameters to try to find the underlying rules governing microbial function so that we can understand, predict and design microbes and microbial communities to improve society

    Non-Markovian barrier crossing with two-time-scale memory is dominated by the faster memory component

    Get PDF
    We investigate non-Markovian barrier-crossing kinetics of a massive particle in one dimension in the presence of a memory function that is the sum of two exponentials with different memory times τ 1 and τ 2 . Our Langevin simulations for the special case where both exponentials contribute equally to the total friction show that the barrier crossing time becomes independent of the longer memory time if at least one of the two memory times is larger than the intrinsic diffusion time. When we associate memory effects with coupled degrees of freedom that are orthogonal to a one-dimensional reaction coordinate, this counterintuitive result shows that the faster orthogonal degrees of freedom dominate barrier-crossing kinetics in the non-Markovian limit and that the slower orthogonal degrees become negligible, quite contrary to the standard time-scale separation assumption and with important consequences for the proper setup of coarse-graining procedures in the non-Markovian case. By asymptotic matching and symmetry arguments, we construct a crossover formula for the barrier crossing time that is valid for general multi-exponential memory kernels. This formula can be used to estimate barrier-crossing times for general memory functions for high friction, i.e. in the overdamped regime, as well as for low friction, i.e. in the inertial regime. Typical examples where our results are important include protein folding in the high-friction limit and chemical reactions such as proton-transfer reactions in the low-friction limit

    Barrier-crossing times for different non-Markovian friction in well and barrier: A numerical study

    Get PDF
    We introduce a generalized Langevin model system for different non-Markovian effects in the well and barrier regions of a potential, and use it to numerically study the barrier-crossing time. In the appropriate limits, our model interpolates between the theoretical barrier-crossing-time predictions by Grote and Hynes (GH), as well as by Pollak et al., which for a single barrier memory time can differ by several orders of magnitude. Our model furthermore allows one to test an analytic rate theory for space-inhomogeneous memory, which disagrees with our numerical results in the long well-memory regime. In this regime, we find that short barrier memory decreases the barrier-crossing time as compared to long barrier memory. This is in contrast with the short well-memory regime, where both our numerical results and the GH theory predict an acceleration of the barrier crossing time with increasing barrier memory time. Both effects, the “Markovian-barrier acceleration” and GH “non-Markovian-barrier acceleration,” can be understood from a committor analysis. Our model combines finite relaxation times of orthogonal degrees of freedom with a space-inhomogeneous coupling to such degrees and represents a step towards more realistic modeling of reaction coordinates

    Phototrophic Fe(II) oxidation in an atmosphere of H_2: implications for Archean banded iron formations

    Get PDF
    The effect of hydrogen on the rate of phototrophic Fe(II) oxidation by two species of purple bacteria was measured at two different bicarbonate concentrations. Hydrogen slowed Fe(II) oxidation to varying degrees depending on the bicarbonate concentration, but even the slowest rate of Fe(II) oxidation remained on the same order of magnitude as that estimated to have been necessary to deposit the Hamersley banded iron formations. Given the hydrogen and bicarbonate concentrations inferred for the Archean, our data suggest that Fe(II) phototrophy could have been a viable process at this time

    Butane dihedral angle dynamics in water is dominated by internal friction

    Get PDF
    The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers’ turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane’s dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins

    Time-Dependent Friction Effects on Vibrational Infrared Frequencies and Line Shapes of Liquid Water

    Get PDF
    From ab initio simulations of liquid water, the time-dependent friction functions and time-averaged nonlinear effective bond potentials for the OH stretch and HOH bend vibrations are extracted. The obtained friction exhibits not only adiabatic contributions at and below the vibrational time scales but also much slower nonadiabatic contributions, reflecting homogeneous and inhomogeneous line broadening mechanisms, respectively. Intermolecular interactions in liquid water soften both stretch and bend potentials compared to the gas phase, which by itself would lead to a red-shift of the corresponding vibrational bands. In contrast, nonadiabatic friction contributions cause a spectral blue shift. For the stretch mode, the potential effect dominates, and thus, a significant red shift when going from gas to the liquid phase results. For the bend mode, potential and nonadiabatic friction effects are of comparable magnitude, so that a slight blue shift results, in agreement with well-known but puzzling experimental findings. The observed line broadening is shown to be roughly equally caused by adiabatic and nonadiabatic friction contributions for both the stretch and bend modes in liquid water. Thus, the quantitative analysis of the time-dependent friction that acts on vibrational modes in liquids advances the understanding of infrared vibrational frequencies and line shapes

    Markov state modeling reveals competing collective hydrogen bond rearrangements in liquid water

    Get PDF
    We construct a Markov state model for the dynamic rearrangement of the local hydrogen bond network in liquid water. The model is based on trajectories from classical molecular dynamics simulations and accounts for the dynamics of relative angular and separation coordinates of water molecules. We analyze first the conformational subspace of three water molecules and find five well separated dynamic modes with reaction times in the 2 - 5 ps range, which correspond to different interchanges of hydrogen bond donor and acceptors, followed by an entire continuum spectrum of modes. We then analyze the switching of one hydrogen bond between two water molecules and derive the complete transition network. The most probable pathway corresponds to a direct switch without an intermediate, in agreement with previous studies. However, a considerable fraction of paths proceeds along different intermediate states that involve alternative hydrogen bonds or unbound states
    corecore