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Barrier-crossing times for different non-Markovian friction in well and barrier: A numerical study
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We introduce a generalized Langevin model system for different non-Markovian effects in the well and barrier
regions of a potential, and use it to numerically study the barrier-crossing time. In the appropriate limits, our
model interpolates between the theoretical barrier-crossing-time predictions by Grote and Hynes (GH), as well
as by Pollak et al., which for a single barrier memory time can differ by several orders of magnitude. Our
model furthermore allows one to test an analytic rate theory for space-inhomogeneous memory, which disagrees
with our numerical results in the long well-memory regime. In this regime, we find that short barrier memory
decreases the barrier-crossing time as compared to long barrier memory. This is in contrast with the short well-
memory regime, where both our numerical results and the GH theory predict an acceleration of the barrier
crossing time with increasing barrier memory time. Both effects, the “Markovian-barrier acceleration” and GH
“non-Markovian-barrier acceleration,” can be understood from a committor analysis. Our model combines finite
relaxation times of orthogonal degrees of freedom with a space-inhomogeneous coupling to such degrees and
represents a step towards more realistic modeling of reaction coordinates.
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I. INTRODUCTION

Many physical systems are comprised of large numbers
of interacting degrees of freedom. A standard approach to-
wards understanding dynamics in such systems is to define a
low-dimensional reaction coordinate, motivated by the phe-
nomenon to be investigated, and to construct an effective
model for the dynamics of this reaction coordinate [1–10].
Hereby, the orthogonal degrees of freedom are subsumed into
an effective heat bath, which interacts with the reaction coor-
dinate [1–4]. One is then typically interested in the long-time
dynamics of the reaction coordinate and in particular rare
events such as barrier-crossing phenomena characterized by
mean first-passage times (MFPTs), τMFP [7,11–18]. Systems
where this approach has been applied are molecules in so-
lution, which show conformational transitions, for example,
protein folding [7,19–22], chemical reactions, where the reac-
tion coordinate characterizes the transition from reactants to
products [13,23–28], and vibrational spectroscopy [29,30].

If the dissipative coupling between reaction coordinate and
heat bath is assumed linear, the dynamics is described by
an approximate version of the generalized Langevin equa-
tion (GLE), with memory effects due to the finite relaxation
time of the heat bath [2,31]. However, in many physical sys-
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tems the dissipative interaction between reaction coordinate
and heat bath depends nonlinearly on the current state of
the reaction coordinate [3]. For example, a small molecule
traversing a membrane separating two different fluids, as illus-
trated in Fig. 1(a), clearly interacts with different orthogonal
degrees of freedom, namely, fluid or membrane molecules, de-
pending on where it is currently located. As a second example,
a reaction coordinate describing the folding of a protein is ex-
pected to experience different friction depending on whether
the protein is unfolded or folded. Even for a single confined
solute particle in a fluid, the nonlinear dissipative interac-
tion of the particle and its surrounding fluid molecules leads
to confinement-dependent memory effects [32]; for colloidal
particles in a viscoelastic fluid, such nonlinear solute-solvent
interactions have been observed experimentally [33].

The first analytical relation between the friction magni-
tude and the barrier-crossing time was derived by Kramers
[11]. Kramers considered the memoryless, i.e., Markovian,
Langevin equation with homogeneous friction magnitude.
He showed that, while in the high-friction limit τMFP scales
linearly with the friction, in the low-friction scenario τMFP

scales linear with the inverse of the friction magnitude. The
crossover between these two asymptotic results was eventu-
ally bridged by a theory due to Melnikov and Meshkov [15]
(MM), which is valid for all values of the friction magnitude.

For the scenario where there is no timescale separation
between heat bath and reaction coordinate, so that non-
Markovian memory effects are relevant, the first theory to
describe barrier-crossing times is due to Grote and Hynes
(GH) [13]. In their theory, only the local memory effects in
the barrier region are taken into account, and away from the
barrier region the reaction coordinate is assumed Markovian.
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(a) (b) (c)

FIG. 1. (a) The dynamics of a particle diffusing through a membrane, separating different solvent species, serves as an illustrative example
for space-inhomogeneous friction effects. (b) The truncated quartic potential Eq. (5) is used to model barrier-crossing dynamics. The colors
indicate regions Xi with different local friction. (c) Example trajectory, simulated using single-exponentially decaying locally coupled memory-
friction components, Eq. (6), with τW/τD = 1 and τB/τD = 0.01, that together form the friction kernel of Eq. (2). The coupling function χi(x)
is given by Eq. (3) for the regions Xi, also shown in (b). The mean first-passage time (MFPT), τMFP, for barrier crossing is defined as the average
of all time differences between crossings of the well bottom at x/L = −1 (shown as vertical gray solid lines) to the escape at the boundary at
x/L = 0.5 (shown as a vertical black solid line).

For the case of homogenous memory effects throughout the
well and barrier regions, Pollack, Grabert, and Hänggi (PGH)
derived τMFP, which for long memory scales quadratically
with the memory time, so that the former can exceed the
latter by orders of magnitude [34]. For the special case of a
single-exponential memory function, the quadratic scaling of
τMFP with memory time was also derived analytically from
a harmonic approximation, and a simple heuristic formula
which reproduces the results of the PGH theory was pro-
posed [35]. Importantly, for systems with long memory, the
predictions of the barrier-crossing time by the PGH and GH
theories differ by many orders of magnitude. Evidently it
is crucial whether the coupling between reaction coordinate
and heat bath is linear throughout well and barrier region
(homogeneous friction) or nonlinear and thus different in well
and barrier region (space-inhomogeneous friction) [35,36].

For homogeneous friction, there exist numerical studies
of barrier crossing considering both single-timescale mem-
ory [7,35,37–39], as well as the implications of several
memory timescales [21,40]. Models incorporating space-
inhomogeneous friction have so far mostly been studied in the
double limit where inertial and memory effects are negligible
and can thus be modeled via an overdamped Langevin equa-
tion [41] or the equivalent Fokker-Planck equation [42,43].
However, this limit is subtle, as non-Markovian memory ef-
fects can generate spurious space-inhomogeneous friction if
interpreted in terms of a Markovian model [22]. For space-
inhomogeneous memory friction magnitude with a single
homogeneous timescale, some works observed significant
deviations of τMFP in both analytic theory and simulations
when compared to the space-homogeneous case [44–46]. The
implications of space-inhomogeneous memory timescales in
the well and barrier regions on the global barrier-crossing
dynamics have so far been addressed only by an analytical
model [47–49] which bridges the GH and PGH scenarios in
certain limits. However, this model has never been challenged
by numerical simulations.

We here present a model system to study space-
inhomogeneous friction memory times and magnitudes,
which in the appropriate parameter regimes reproduces the
predictions of both the PGH and GH theory. Our model is

based on the nonlinear Zwanzig model [3,48]. Importantly,
while the model makes certain simplifying assumptions that
are not guaranteed to hold for general systems, it allows us to
study under which conditions τMFP is determined dominantly
by the memory friction either in the well or in the barrier
region. Specifically, we consider a reaction coordinate subject
to a potential well, bounded by a moderate barrier on one
side, as illustrated in Fig. 1(b). In the well and barrier regions
the reaction coordinate is locally coupled to independent heat
baths, each with a single finite and in general different relax-
ation time. This local coupling leads to space-inhomogeneous
single-exponential memory in the reaction coordinate, and by
independently varying the memory effects in the well and bar-
rier region we disentangle the effects of space-inhomogeneous
memory times, τW for the well and τB for the barrier, and
friction magnitudes, γW and γB, on the barrier-crossing time.
By comparing results of numerical simulations to the rate
theories of the GH theory [13] and PGH theory [34] (for
which we for simplicity use our previously derived heuristic
formula [21]), with the latter evaluated using either the well
or barrier friction, we are able to infer which theory describes
the numerical results, and whether the barrier-crossing time
depends dominantly on the well or barrier friction.

We present the results of our numerical study in two parts.
First, we discuss the Markovian regime, for which memory
effects in both the well and barrier regions are negligibly
small, i.e., τB and τW are much smaller than the diffusive
timescale τD = γ L2/(kBT ), given by the friction constant γ ,
a length scale L and thermal energy kBT . The dynamics in
this regime are thus dependent only on inertial effects, which,
strictly speaking, are Markovian only if both instantaneous
position and velocity are used for defining a configuration.
By labeling inertial effects as Markovian, we demarcate such
inertial effects from non-Markovian effects due to coupling
of the principle coordinate with hidden heat bath degrees of
freedom. In our model inertial effects are characterized by
the inertial timescale for the different friction magnitudes,
τm,B = m/γB or τm,W = m/γW. We find that whenever the
well dynamics is in the high-friction regime, m/γW � τD,
then the barrier-crossing time is determined by the barrier top
friction. If then, the barrier top is also in the high-friction
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regime, m/γB � τD, τMFP is described by Kramers’ theory
[11], evaluated using the friction magnitude at the barrier
top. If, instead, the barrier dynamics is in the low-friction
regime, m/γB > τD, while γB and γW are not too different,
then the MM theory [15] or PGH theory [34], evaluated using
the barrier parameters, describes the numerically obtained
barrier-crossing times. On the other hand, if the dynamics in
the well is in the low-friction regime, m/γW > τD, then τMFP

is described by the PGH theory or MM theory, both evalu-
ated using the well parameters, which therefore dominates the
global barrier-crossing dynamics.

In the second part we discuss the non-Markovian regime,
where memory effects in either well or barrier regions are
relevant, i.e., either τB or τW is of at least similar order as
the diffusive timescale τD. For simplicity we keep the friction
magnitudes equal, γB = γW, and consider the high-friction
regime by imposing m/γB = m/γW � τD. Analogous to the
previous case, we find that whenever the well dynamics is
in the Markovian regime, τW � τD, then the barrier-crossing
time is determined by the barrier top friction. If then again,
the barrier top is also in the Markovian regime, τB � τD,
τMFP is described by Kramers’ theory [11], evaluated using
the friction parameters for the barrier top. If, instead, memory
effects in the barrier region are relevant, then the GH theory
[13] agrees with the numerically obtained barrier-crossing
times. In contrast, if the well memory is long, τW > τD, τMFP

is described by the PGH theory using the well parameters.
While then in general τMFP is rather independent of the barrier
friction, Markovian barrier dynamics lead to a speed up of
τMFP as compared to a barrier region with long memory. This
speedup, which we term the “Markovian-barrier acceleration,”
is not captured by any presently available rate theory, but
can be understood from a committor analysis, analogous to
the “non-Markovian-barrier acceleration” already predicted
by the GH theory.

The remainder of this paper is organized as follows. In
Sec. II we first introduce the space-inhomogeneous memory
model we consider. In Sec. III we then compare numerical
simulations of our model to rate-theory predictions. We first
consider the short-memory limit and subsequently study how
local memory effects modify τMFP. In our concluding Sec. IV
we provide a table which summarizes our results.

II. MODEL

We consider a reaction coordinate x and N noninteracting
heat baths with finite relaxation dynamics [3,48]; for x ∈ Xi,
the reaction coordinate couples linearly to the ith heat bath.
As we show in Appendix A 1, integrating out the bath degrees
of freedom then leads to a GLE

mẍ(t ) = −
∫ t

0
dt ′ �[t − t ′, x(t ), x(t ′)]ẋ(t ′)

− ∂xU [x(t )] + η[x(t ), t], (1)

which is a generalization of the model proposed by Zwanzig
[3]. U [x(t )] is a potential landscape, and the space- and time-

dependent friction kernel �[t − t ′, x(t ), x(t ′)] is given as

�[t − t ′, x(t ′), x(t )] =
N∑

i=1

χi[x(t )]�i(t − t ′)χi[x(t ′)], (2)

where the purely time-dependent components �i describe the
internal relaxation dynamics of reservoir i, and the dimension-
less functions χi, defined by

χi(x) =
{

1 if x ∈ Xi,

0 if x /∈ Xi,
(3)

describe the coupling of the reaction coordinate x to reservoir
i. The terms in Eq. (2) have a simple intuitive interpretation:
at any past time t ′, the reaction coordinate x perturbs reservoir
i via the coupling strength χi[x(t ′)]; this perturbation relaxes
in the heat bath for a duration t − t ′ as described by �i(t − t ′),
and finally couples back to the reaction coordinate at the time
t via χi[x(t )].

As we show in Appendix A 2, the random force fulfills the
fluctuation-dissipation relation

β〈η[x(t ), t]η[x(t ′), t ′]〉 = �[t − t ′, x(t ), x(t ′)], (4)

where β−1 = kBT is the thermal energy with kB the Boltz-
mann constant and T the absolute temperature.

For our numerical simulations we consider barrier crossing
in the quartic potential

U (x) = U0

[( x

L

)2
− 1

]2

, (5)

with a length scale L and barrier height βU0 = 3 (we show
some results with varying barrier heights in Appendix C 2).
To systematically study the effect of space-inhomogeneous
memory on τMFP, we consider N = 2 independent heat baths
with coupling regions in the well, XW/L = (−∞,−0.5), and
on the barrier, XB/L = [−0.5, 0.5), as illustrated in Fig. 1(b).
For the resulting two memory kernels �W and �B, we consider
single-exponential kernels,

�i(t ) = γi

τi
e−t/τi , (6)

with friction magnitudes γi and relaxation timescales τi,
where i ∈ {W, B}. This means that the particle interacts with
two independent heat baths, each of which relaxes according
to a single exponential.

As we show in Appendix A 3, Eq. (1) with local memory
Eq. (2) can be cast into dimensionless form by introduc-
ing a diffusion timescale τD = βγ L2 with γ = ∑

i γi, and
an inertial timescale τm = m/γ . With the potential (5) and
a given barrier height βU0, the system is then specified by
four dimensionless parameters which we choose to be the di-
mensionless inertial timescale τm/τD, the dimensionless local
memory times τi/τD, i ∈ {W, B}, and one of the two relative
friction magnitudes γi/γ , i ∈ {W, B}. To transform dimen-
sionless results to physical dimensions, the temperature T , the
length scale L, and the sum γ of the local friction magnitudes
additionally need to be specified. To simulate the dimension-
less formulation of Eqs. (1), (2), and (4), we use a Markovian
embedding whereby we explicitly simulate the dynamics in
the reservoirs, as detailed in Appendix A 3.
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FIG. 2. MFPT, τMFP/τD, for different barrier memory friction, �B(t ) = γBe−t/τB/τB and well memory friction, �W(t ) = γWe−t/τW /τW,
obtained from numerical simulations (data points) and compared with analytical predictions given by Mel’nikov and Meshkov [15] (MM, solid
and broken lines). The data are shown for various inertial timescales τm/τD and equal memory times in the Markovian limit, τB/τD = τW/τD =
10−4. (a) τMFP plotted over the inertial timescale τm/τD for different ratios of the barrier to total friction magnitude γB/γ . The predictions by
MM are shown for the effective barrier-friction parameters given by γB and for the effective well-friction parameters given by γW. The black
triangles denote simulations with space-homogeneous friction. (b, c) Example trajectories from simulations. (d) τMFP plotted over γB/γ for
various τm/τD. The predictions by MM are shown for the effective barrier-friction parameters as broken lines and for the effective well-friction
parameters as solid lines. (e) Contour plot of agreement of the simulation results with the theoretical predictions. The color denotes whether the
simulated τMFP ∈ [2/3 τtheo, 3/2 τtheo], where τtheo is calculated using MM theory and either the effective well- or barrier-friction parameters.
The hatching indicates that both theoretical predictions agree with the simulated data. White denotes that neither predictions agrees within the
tolerance. (f) Model potential (f1) and friction profile (f2) used to study the effect of the barrier friction on τMFP in the high-friction Markovian
regime. For this model τMFP is exactly predicted by Eq. (8).

In analogy to previous works, we define various limits
by comparison of respective timescales with the diffusive
timescale τD. For example the Markovian limit where memory
effects are negligible is obtained for τi < τD, and the high-
friction limit where inertial effects are negligible is obtained
for τm < τD [21,35,40]. However, since the local friction in
region i, γi, is only part of the total friction γ , which is used to

define τD, a condition τi � τD does not automatically ensure
the expected limit in region i. Rather, a condition involving
the local diffusive timescale, τD,i ≡ βL2γi, needs to be used,
namely, τi/τD,i ≡ τi/τD(γ /γi) � 1. Similarly, inertial effects
are locally relevant for τm,i/τD,i ≡ τm/τD(γ /γi )2 � 1, where
τm,i ≡ m/γi. While the distinction between τm,i, τD,i and τm,
τD is important if γi is significantly smaller than γ , for most
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of the parameter combinations we consider in the main text,
all γi are of similar order as their sum γ .

Since we are interested in evaluating the barrier-crossing
time starting from the well region XW, we restart the simula-
tion once the particle crosses the right boundary at x/L = 0.5,
which we consider a successful escape. At each restart, we
draw the initial position from an approximate Boltzmann dis-
tribution around the well minimum, i.e., we draw a Gaussian
random variable x(0) with 〈x(0)/L〉 = −1 and 〈[x(0)/L +
1]2〉 = kBT/[L2U ′′(−L)] = kBT/(8U0). Similarly, we draw
the initial velocity ẋ(0) from its equilibrium distribution, i.e.,
a Gaussian random variable with 〈ẋ(0)〉 = 0 and 〈ẋ2(0)〉 =
kBT/m. The initial conditions for the heat bath variables we
subsequently draw from their respective Boltzmann distribu-
tions, as detailed in Appendix A 2.

In Fig. 1(c) we show an example trajectory, simulated
using long memory in the well and short memory on the
barrier, for which different dynamics in the different regions
are clearly observed: While in the well region the trajectory
oscillates weakly-damped around the potential minimum, on
the barrier the trajectory is more akin to overdamped diffusive
dynamics. Figure 1(c) furthermore illustrates how we com-
pute τMFP from observed time differences between crossings
of the well minimum and the escape at x/L = 0.5. That this
is a reliable method for calculating τMFP has been shown
before [35].

In the main text, we compare our numerical results to the
GH [13], MM [15], and PGH theory [34], where instead of
the latter we use a heuristic formula [35] in practice. The GH
theory accounts only for barrier memory friction, which is
why we always evaluate it using the barrier memory kernel;
the theory assumes fast equilibration within the well, and does
not depend on the well friction explicitly. Both the Markovian
MM and non-Markovian PGH theory assume homogeneous
friction. We therefore evaluate these theories using either the
local parameters γi, τi of the well or barrier region. This allows
us to infer not only which rate theory describes the barrier-
crossing dynamics in which regime, but also which region
(well or barrier) dominantly determines the global τMFP. In
Appendix B we summarize the equations used to calculate
predictions for all rate theories considered in the main text. In
the main text, we do not compare our numerical simulations to
the analytical rate theory for space-inhomogeneous memory
friction due to Krishnan et al. [48]. The reason for this is
twofold: First, by comparing to the widely used GH and PGH
theories, we are able to assess which local dynamics dominate
the global τMFP. Second, as we show in Appendix C 4, the
theoretical predictions by Krishnan et al. [48] do not cap-
ture the “Markovian-barrier acceleration” regime, which we
prominently discuss below and which we quantify using the
PGH predictions.

III. RESULTS

In order to decouple Markovian inertial effects and
non-Markovian memory effects we analyze both scenarios
independently. For this we first consider the Markovian limit,
τB/τD, τW/τD � 1, and vary τm/τD, and second the high-
friction limit, τm/τD � 1, with varying τB/τD and τW/τD.

A. Markovian friction dynamics

We now consider the Markovian limit for both well and
barrier. In Fig. 2(a) we show the rescaled τMFP/τD as a
function of the rescaled inertial time τm/τD. For reference,
we include numerical results from a GLE with a homoge-
neous single-exponential memory kernel with memory time
τglob/τD = 10−4 and a single friction magnitude γglob = 0.9 γ

(chosen as to coincide with the light green solid line, as
explained further below) [35]; the resulting τMFP are shown
in Fig. 2(a) as black triangles, and clearly show the Kramers
turnover between high-friction dynamics for τm/τD � 1,
where τMFP scales as ∼γ , and low-friction dynamics for
τm/τD 
 1, where τMFP scales as ∼m/γ [11,15,35].

Figure 2(a) furthermore shows numerical results for the
space-inhomogeneous memory model Eqs. (1) and (2) for
τB/τD = τW/τD = 10−4 and the two values γB/γ = 0.1, 0.9.
For γB/γ = 0.1 we have γW/γ = 0.9, so that the friction in
the well is almost one order of magnitude larger as compared
to the friction in the barrier region. Conversely, for γB/γ =
0.9 the friction in the well, γW/γ = 0.1, is almost one order
of magnitude smaller as compared to the friction in the barrier
region. While in the high-friction regime τm/τD � 1, the re-
sults for γB/γ = 0.9 (light green circles; barrier friction much
larger than well friction) agree well with the global mem-
ory friction data (black triangles), in the low-friction regime
τm/τD 
 1, it is τMFP for γB/γ = 0.1 (dark blue squares; well
friction much larger than barrier friction) that is comparable to
the global memory friction result. This indicates that for high
friction, τMFP is dominated by the barrier friction, whereas for
low friction τMFP is dominated by the well friction.

The crossover between barrier-dominated τMFP to well-
dominated τMFP observed in Fig. 2(a) is further confirmed
by comparing the numerical data to predictions of the MM
theory for Markovian barrier crossing, which is based on
homogeneous friction. In Fig. 2(a) we show the predictions
of MM theory, evaluated using either the well friction γW or
the barrier friction γB. Note that because of the symmetry
in the used parameters, the light green solid line represents
both the MM prediction for γB/γ = 0.9, and evaluation us-
ing the barrier friction, as well as the MM prediction for
γB/γ = 0.1, and evaluation using the well friction. On the
other hand, the dark blue broken line represents the opposite
parameter choice in both scenarios. We observe that, while in
the high-friction limit τm/τD � 1, the simulated τMFP agree
with the MM predictions evaluated at the barrier region, for
low friction τm/τD 
 1 the numerical data are described by
the MM theory evaluated at the well.

That for the Markovian high-friction scenario, τMFP is
dominated by the barrier friction, follows from a simple an-
alytical model. In the high-friction Markovian limit τMFP to
start at x0 and reach x f in a potential U (x) and for space-
inhomogeneous friction γ (x) is derived exactly from the
Fokker-Planck equation as [43]

τMFP(x0, x f ) = β

∫ x f

x0

dx γ (x)eβU (x)
∫ x

xL

dx′ e−βU (x′ ), (7)

where xL < x0 is a lower reflecting boundary. To study the
effect of barrier friction on τMFP, we consider the model il-
lustrated in Fig. 2(f): a simplified flat potential U (x), which
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features a reflecting boundary at x = 0 and a step barrier of
height U0, width B and friction γB located at position x = L/2.
Outside of the potential barrier, the friction is γW. Considering
x0 = xL = 0 and x f = L, τMFP is calculated from Eq. (7) to be

τ 0→L
MFP = β

L2

2
γW + β

LB

2
(γB − γW)

+ β
B(L − B)

2
(1 − e−βU0 )(γBeβU0 − γW). (8)

In the high-barrier limit, where βU0 
 1, Eq. (8) is dominated
by an expression which contains only the barrier friction γB:

τ 0→L
MFP ≈ βγB

B(L − B)eβU0

2
. (9)

This result explains why the τMFP in the high-friction scenario
is determined by the barrier friction.

Example trajectories, comparing the cases of Markovian
high-friction dynamics (τm/τD = 10−4), where τMFP is de-
termined by the barrier friction, and Markovian low-friction
dynamics (τm/τD = 10), where τMFP is determined by the
well friction, are shown in Figs. 2(b) and 2(c). While the
trajectory in Fig. 2(b) generally exhibits dynamics reminiscent
of Markovian high-friction Langevin dyamics around the well
and also in the barrier region, differences in the lengths of
persistent motion due to the vastly different local friction mag-
nitudes are clearly visible. The trajectory in Fig. 2(c) shows
oscillations within the wells and long residence times, which
are typical of inertia-dominated stochastic dynamics [35].

Figure 2(d) shows the numerical τMFP, plotted as a func-
tion of the relative barrier friction γB/γ for various values
of the rescaled inertial time τm/τD. Again, while for high
friction, τm/τD = 10−4, the simulated data agree with the
MM theory evaluated using the barrier friction (light green
broken line), for large τm/τD = 10 the numerical results agree
with the predictions using the well friction (dark blue solid
line). We observe that for the parameters considered, the
rescaled τMFP/τD always increases monotonously with γB/γ ,
indicating that increasing barrier friction while decreasing
well friction slows down barrier-crossing. The analytical MM
theory shows nonmonotonicities for the case of high total
friction, τm/τD = 10−4, but very unequal friction magnitudes
in well and barrier regions, γi/γ � 1, i.e., to the far right and
left of Fig. 2(d). This is discussed in detail in Appendix C 1.

Figure 2(e) illustrates for which parameters the simulated
τMFP is described by the theoretical predictions of MM theory,
evaluated for either the well- or barrier-friction parameters.
The figure again clearly shows that for high-friction dynam-
ics, τm/τD � 0.1, τMFP is determined by the barrier friction,
whereas for low-friction dynamics, the well friction deter-
mines τMFP. The hatched area shows the overlap where both
predictions calculated using well or barrier friction agree
with the simulated τMFP. Obviously, in the crossover between
barrier- and well-dominated friction, where γB ≈ γW, the rate
theories produce similar results when evaluated using barrier
or well friction; see also Fig. 2(d). This is because for γB/γ ≈
0.5, we have γW/γ = (γ − γB)/γ ≈ 0.5, so that the effective
friction magnitudes in well and barrier region, and hence the
predictions of MM theory, which depend on the effective local
friction, are similar.

To summarize Figs. 2(a)–2(e), in the Markovian (short
memory) limit, the rescaled τMFP is for high-friction dynamics
determined by the barrier friction, whereas for low-friction
dynamics it is determined by the well friction. The former
effect is illustrated by the analytical result Eq. (9), while
the latter is intuitively understood from the concept of en-
ergy diffusion. For low-friction dynamics the energy exchange
between the reaction coordinate and the heat bath is weak
and therefore the energy to cross the potential barrier is only
slowly built up in the well region. This process is dominated
by the well dynamics and leads to a slow-down of the global
barrier-crossing times. Since slow energy diffusion is also
apparent for long memory times, a similar effect is observed
in the discussion of the non-Markovian dynamics in the fol-
lowing.

B. Non-Markovian friction dynamics

In Fig. 3 we investigate the memory-time dependence of
τMFP. For this, we consider a constant inertial timescale in the
high-friction limit, τm/τD = 10−4, and identical friction mag-
nitudes for the two reservoirs, γW/γ = γB/γ = 0.5, while
varying the well- and barrier-friction timescales, τW/τD and
τB/τD. We compare our numerical results to analytical pre-
dictions based on both the GH theory [13], which we evaluate
using the barrier-friction parameters τB, γB and which is hence
independent of the well parameters, and PGH theory [34] (for
which we in practice use a heuristic formula [21]), which we
evaluate for both the well parameters τW, γW or the barrier
parameters τB, γB.

In Fig. 3(a) we show the rescaled τMFP as a function of
the barrier memory time τB/τD for various fixed well memory
times τW/τD. For short barrier memory, τB/τD � 0.1, the dy-
namics on the barrier top is Markovian and the numerical τMFP

are independent of τB/τD. If additionally also the memory
in the well is short, τW/τD � 0.1, we are in the Markovian
high-friction limit. While, as we have already discussed in the
context of Fig. 2(a), in this limit the barrier-crossing time is
determined by the barrier friction, the PGH theory evaluated
with well friction (black solid line) agrees with the PGH
theory evaluated with barrier friction (colored solid lines) and
GH theory (black broken line; always evaluated at barrier
friction); this is because we have equal friction magnitudes
in well and barrier. While in the double limit of high friction
and short well memory τW/τD � 0.01, all theories describe
the numerical data (shown as circle and square markers) as
long as τB/τD � 0.01, for τB/τD � 0.01, both the GH theory
and numerical results display an acceleration (as compared
to the Markovian limit τB/τD → 0); we refer to this as GH
“non-Markovian-barrier acceleration.” That the GH theory
describes this acceleration regime is expected because it was
derived assuming fast equilibration within each well, which
is in line with the high-friction Markovian dynamics inside
the well for τm/τD = 10−4, τW/τD � 0.01. We note that in
the limit of τB/τD → ∞, the GH theory agrees with the
predictions of transition state theory [13]. For high-friction
dynamics with short well memory, τMFP is thus determined
by the barrier friction and described by the GH theory.

On the other hand, for long memory in the well, τW/τD �
1, the numerical τMFP (dark purple diamonds and dark blue
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(a) (d)

(b) (e)

(c) (f)

FIG. 3. MFPT, τMFP/τD, for different barrier memory friction, �B(t ) = γB/τBe−t/τB and well memory friction, �W(t ) = γW/τWe−t/τW , from
numerical simulations (data points) compared with analytical predictions given by Grote and Hynes [13] (GH, broken lines) and Pollak et al.
[34] (PGH, solid lines, evaluated using the heuristic formula [21]). The data are shown for various barrier-friction τB/τD and well-friction
times τW/τD, constant inertial timescale in the high-friction limit τm/τD = 10−4, and equal friction magnitudes γB/γ = γW/γ = 0.5. (a) τMFP

plotted over the barrier-friction time τB/τD (data points). The theories are shown for the respective barrier-friction time in black and in the case
of the PGH theory for the well-friction time as colored lines. Simulated τMFP to reach the barrier entry at x/L = −1/2 are shown as colored
dash-dotted lines. (b, c) Example trajectories from simulations for the barrier-dominated and GH-predicted limit (b) and the well-dominated
PGH-predicted limit (c). (d) τMFP plotted over the well-friction time τW/τD (data points). The theories are shown for the respective well-friction
time in black and in the case of the GH theory for the barrier-friction time as colored broken lines. (e) Contour plot of agreement of the
simulation results with the theoretical predictions. The color denotes whether the simulated τMFP ∈ [1/3 τtheo, 3 τtheo], where τtheo is calculated
using either the GH theory with the barrier-friction parameters or the PGH theory with the well-friction parameters. The hatching indicates
that both theoretical predictions agree with the simulated data. The light blue area denotes the “Markovian-barrier acceleration” of the PGH
prediction for which we define τtheo,MBA = 0.2 τtheo,PGH. (f) Committor p(TP|vin ) for transition paths crossing the barrier region plotted over
the initial velocity vin upon entering the barrier region for various barrier-friction times τB/τD and constant well-friction time τW/τD = 1 and
inertial time τm/τD = 10−4. The velocity related to the difference in potential energy relative to the barrier top is plotted as a vertical black
broken line. The flux-weighted equilibrium velocity distribution peq(vin ) is plotted as a gray broken line on a linear scale.
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triangles) are comparable to the predictions of the PGH theory
evaluated with the well parameters, and even for a Marko-
vian barrier, τB/τD � 1, disagree considerably with the GH
theory (which indicates a breakdown of the assumption of
fast equilibration within the well inherent to the GH theory).
In contrast to the Markovian-well scenario, for long well
memory τMFP is thus determined by the well dynamics. In-
terestingly, in the long-well-memory regime, τW/τD � 1, the
observed τMFP show a slight acceleration for small barrier-
memory times τB/τD � 0.1, as compared to the predictions
by the PGH theory and the numerical results for τB/τD 

0.1. We here refer to this acceleration due to short barrier
memory as “Markovian-barrier acceleration,” which notably
behaves opposite as a function of τB as compared to GH
“non-Markovian-barrier acceleration,” as we discuss further
below.

Figures 3(b) and 3(c) show example trajectories where
τMFP is determined by barrier or well friction. For the tra-
jectory shown in Fig. 3(b) τMFP is determined by the barrier
friction, and we observe high-friction Markovian dynamics
within the well and a direct transition path upon entering the
barrier region. The trajectory with well-friction-determined
τMFP, Fig. 3(c), on the other hand shows a long residence time
in the well, and multiple attempts entering the barrier region
before crossing over the barrier top, that are associated with
energy-diffusion, i.e., memory- or inertia-dominated trajecto-
ries [35].

In Fig. 3(d) we show the numerical τMFP as function of the
well memory time τW/τD, for several constant values of the
barrier memory time τB/τD. We again compare to theoretical
predictions based on the PGH and GH theories. Similar to
Fig. 3(a) we see that for short well memory, τW/τD � 0.1,
τMFP becomes independent of the well memory time so that
the dynamics is governed by the barrier. If additionally the
barrier memory time is short, τB/τD � 0.1, then τMFP is de-
scribed by both the PGH (evaluated in the well) and GH
theory. Increasing the barrier memory time τB/τD then leads to
an acceleration of barrier crossing as we discussed in Fig. 3(a),
and as described by the GH theory [leftmost data points in
Fig. 3(d)]. For any value of the barrier memory τB/τD, we ob-
serve that as the well memory is increased, for τW/τD � 1 an
asymptotic long-memory regime with τMFP ∼ τ 2

W is reached
[35], which is well described by the PGH theory evaluated at
the well. Increasing the well memory time τW/τD thus has
both a qualitatively and quantitatively very different effect
from increasing the barrier memory time τB/τD where, as
demonstrated in Fig. 3(a), τMFP slightly increases/decreases
(depending on τW/τD) and then becomes independent of
τB/τD.

Figure 3(e) summarizes the agreement of the simulated
high-friction τMFP with the PGH theory, evaluated on well pa-
rameters, and the GH theory, which is always evaluated using
the barrier parameters. We see that once the well memory
becomes relevant, i.e., for τW/τD � 0.1, τMFP is approxi-
mately described by PGH theory evaluated at the well. The
“Markovian-barrier acceleration” regime appears if memory
in the well is relevant, but in the barrier region the memory
time is short, i.e., for τB/τD � 1, τW/τD � 1, and is shown
as light blue. If well memory effects are negligible, i.e., for
τW/τD � 0.1, but memory effects are relevant in the barrier

region, τB/τD 
 0.1, then GH theory describes the numerical
results. If memory effects are negligible for both well and
barrier region, τW/τD � 1 and τB/τD � 0.1, then we are in
the Markovian limit, where the barrier friction γB determines
τMFP. That in this regime both GH theory (evaluated at the
barrier region) and PGH theory (evaluated at the well region)
describe the numerical τMFP, as indicated by the hatching,
can be rationalized by the fact that we use the same friction
magnitude for well and barrier, γB = γW.

C. Markovian-barrier acceleration

In order to gain intuition about the “Markovian-barrier
acceleration” regime, i.e., the slight barrier-crossing speed-up
observed for τW/τD � 1, τB/τD � 1 in Figs. 3(a) and 3(d), we
perform a committor analysis, the results of which are shown
in Fig. 3(f). The committor shown in the figure is defined as
the probability to be on a transition path through the barrier
region, and plotted as a function of the initial velocity with
which the particle enters the barrier region, vin. For com-
parison, the flux-weighted equilibrium velocity probability
density, peq.(v) ∝ v exp[−mv2/(2kBT )] [50,51], is given as a
gray broken line. Furthermore, we show as a vertical black
broken line the threshold velocity vt with which an undamped
particle entering the barrier region crosses over the barrier top,
so that mv2

t /2 = U0 − U (x = −L/2) = 7U0/16, and hence
vt = √

7U0/(8m).
For short memory in the barrier region, τB/τD � 1, the

committor is relatively small and only very slightly increases
with larger initial velocities (the light green and light red solid
lines), indicating that the kinetic energy is quickly dissipated
in the barrier region and the probability to perform a transition
is approximately independent of the velocity with which the
particle enters the barrier region. For long barrier memory
τB/τD � 1, the committor remains almost zero for velocities
vin � vt , indicating that many trajectories that enter the barrier
region will simply roll back into the well region. They initially
do not have enough kinetic energy to cross the barrier top
and the energy exchange with the barrier heat bath is not
fast enough to gain the missing energy. At vt , the committor
starts to increase sharply and saturates at a value of 1, which
means that virtually every trajectory that enters the barrier
region with at least this kinetic energy performs a transition
through the barrier region. This is consistent with a weak
energy exchange of heat bath and reaction coordinate in the
barrier region, where a trajectory traverses the barrier top only
if initially it has enough kinetic energy to reach there.

The physical picture for the “Markovian-barrier acceler-
ation” regime is hence that for short barrier memory time
the energy exchange between reaction coordinate and barrier
heat bath is fast; this means that for high-friction Markovian
barrier dynamics, a large fraction of particles entering the
barrier region (without enough energy to cross the barrier
top) is able to obtain the missing energy from the barrier
heat bath, which leads to a decrease in τMFP with decreasing
barrier memory time. Interestingly, as can be seen in Fig. 3(a),
this effect changes τMFP in the opposite way as the “non-
Markovian-barrier acceleration” predicted by the GH theory,
and reproduced by our numerical model in the limit of high-
friction Markovian dynamics in the well.
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Nevertheless, the mechanisms behind both regimes are
similar and can each be understood from the committor analy-
sis shown in Fig. 3(f). “Non-Markovian-barrier acceleration”
profits from the fact that in the case of long barrier memory
fast initial velocities, i.e., vin � vt [to the right of the verti-
cal black broken line in Fig. 3(f)], always lead to a direct
transition. In case of short well memory, the initial velocities
vin of subsequent barrier crossing attempts are only weakly
correlated, allowing for the assumption made by the GH
theory that the equilibrium velocity distribution is sampled
equally at any attempt. Consequently the high-velocity tail of
the equilibrium distribution of vin is visited more frequently
over time compared to the long well memory case, where the
initial velocity changes rather slowly for consecutive attempts,
due to the weak coupling to the well heat bath. On the other
hand, in the limit of long well memory the “Markovian-barrier
acceleration” profits from the fact, that in the case of slow
initial velocities, i.e., to the left of the vertical black broken
line, and short barrier memory, there is still a small chance
that a transition over the barrier occurs. This leads to a slightly
faster τMFP when compared to the case that all the energy to
reach the barrier top needs to be accumulated from the well
heat bath.

This analysis furthermore suggests a simple way to quan-
tify the “Markovian-barrier acceleration”: τMFP over the
barrier is mainly determined by τMFP to reach the barrier re-
gion for the first time. Subsequently, a successful transition of
the barrier region happens relatively quickly. On the contrary,
for long barrier memory τMFP over the barrier is determined
by the time to reach the barrier top. In Fig. 3(a) we therefore
also compare τMFP to reach the barrier entry at x/L = −0.5
(dark purple and dark blue dash-dotted lines) and τMFP over
the barrier to reach at x/L = 0.5 (the data coincide with the
dark purple and dark blue solid lines), both evaluated from
simulations with a global memory friction assuming the well
friction parameters. As expected, the former coincide with the
data of the “Markovian-barrier acceleration” regime correctly,
while the later coincide with the data in the case of long barrier
memory.

A comparison of all presented simulation data with the
global analytical rate theory for local memory effects by
Krishnan et al. [48] is shown in Appendix C 4. Their the-
ory performs well in some regimes of the parameter space,
correctly interpolates between predictions by GH and PGH
and therefore intrinsically determines whether the dynamics
are well or barrier dominated. However, in certain parame-
ter regimes, including the “Markovian-barrier acceleration”
regime, major deviations from the numerical results are ob-
served. This is due to instabilities of the perturbation theory
inherent to the analytical approach, in fact, the authors them-
selves state that predictions in this parameter regime should
be validated by simulations, as we have done here.

IV. CONCLUSIONS

We study a model for barrier crossing with different well
and barrier memory friction times and magnitudes. By com-
paring extensive numerical simulations of this model to the
GH theory (which takes into account memory friction in the
barrier region) and the PGH theory (which does not take into

TABLE I. Summary of the regimes observed when varying
single-exponential barrier and well memory friction, and the respec-
tive applicable rate theories with the dominant preexponential scaling
factors. The GH reactive frequency λ is defined in Appendix B1.
The table is approximately valid while the barrier and well friction
magnitudes remain within one order of magnitude. Some effects for
very different friction magnitudes in well and barrier are discussed
in Appendix C 1.
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account space-inhomogeneous memory), we identify in which
region of the model parameter space the barrier-crossing time,
in terms of the mean first-passage time, τMFP, is determined by
the well memory or the barrier memory, respectively.

The memory friction around the barrier top determines
τMFP only if the dynamics in the well is in the Markovian
high-friction regime. In this case τMFP is described by GH
theory if non-Markovian effects on the barrier are present,
and instead by MM theory if Markovian low-friction effects
dominate the barrier dynamics while the friction magnitudes
in well and barrier are comparable.

If the dynamics in the well is in the so-called energy-
diffusion regime, i.e., either dominated by inertia effects,
τm,W/τD,W � 1, or because of long memory in the well,
τW/τD,W � 1, then the rate-limiting step is obtaining enough
energy from the well heat bath to make a barrier-crossing
attempt. In this scenario, τMFP is described by the PGH theory
evaluated for the well parameters. In this regime, high friction
on the barrier top slightly diminishes τMFP; this “Markovian-
barrier acceleration” is due to the strong interaction between
reaction coordinate and heat bath in the barrier region, which
enables particles that enter the barrier region without enough
energy for a barrier crossing to gain the missing energy in
the barrier region and make it over the top. Interestingly,
the same mechanism leads to a slow-down in the case of
a Markovian well, where the “non-Markovian-barrier accel-
eration” correctly predicted by the GH theory happens in
the limit of long barrier memory, not short barrier memory.
This contrast highlights the complex interplay between barrier
friction and well friction. The different regimes, and which
theory needs to be evaluated where in order to describe the
corresponding τMFP, are summarized in Table I. The table
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allows one to quickly infer which aspect of the dynamics of a
reaction coordinate determines the timescales of rare events,
and will help researchers identify the appropriate rate theory
for a given system.

While theoretical works often incorporate only either
space-inhomogeneous friction magnitudes or homogeneous
time-dependent memory friction [7–10,21,34,35,40–43], re-
action coordinates in physical systems with nonlinear inter-
actions may in general exhibit both effects simultaneously.
Our model system therefore represents a step towards more
realistic coarse-grained descriptions of reaction coordinates.
To parametrize a GLE with both space-inhomogeneous mem-
ory friction time and magnitude, such as the one presented
in this work, from time series data, an extension of meth-
ods established for homogeneous memory can be considered
[7,52,53]. Furthermore, there are several relevant extensions
of our model system. First, an interaction between the differ-
ent coupling heat baths could be included, as in a physical
system the orthogonal degrees of freedom are in general not
isolated from each other. Second, it will be interesting to
consider the nonequilibrium scenario where the interaction
between reaction coordinate and orthogonal degrees of free-
dom does not originate from an interaction potential; this
scenario has been studied before for homogeneous friction
[54].

Quantum effects are not incorporated in the present model,
but quantum projection methods have previously been dis-
cussed [55,56]. Within the Born-Oppenheimer approximation
classical barrier crossing dynamics would essentially be mod-
ified by two effects: reduction of the effective barrier height
due to zero-point motion and competition of the classical
barrier-crossing rate with the tunneling rate [14,16]. Beyond
the Born-Oppenheimer approximation, nonadiabatic effects
such as electronic transitions between different energy sur-
faces would require multistate modeling [57].
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APPENDIX A: GENERALIZED LANGEVIN EQUATION
WITH SPACE-INHOMOGENEOUS MEMORY FRICTION

1. Formulation of the GLE in a Markovian embedding

In the present section we show that the GLE with space-
inhomogeneous memory, Eq. (1) from the main text, is
equivalent to a N + 1-dimensional dynamical system, in
which the reaction coordinate x(t ) is coupled to N auxil-

iary degrees of freedom (y1(t ), . . . , yN (t )), which we refer
to as the heat bath. We assume that each of the yi obeys an
overdamped Langevin equation with random force Fi(t ) and
friction magnitude γi. In analogy to the derivation by Zwanzig
[3], we assume that the reaction coordinate is coupled to
the heat bath via a nonlinear potential Uhb(x, y1, . . . , yN ) =∑N

i=1 ki[ fi(x) − yi]2/2, where hb stands for heat bath, ki de-
termines the coupling strength between x and yi, and the
functions fi will be used to obtain a space-inhomogeneous
coupling between reaction coordinate and reservoir i. The
total potential Utot experienced by the dynamical system
(x(t ), y1(t ), . . . , yN (t )) is then given as a sum

Utot (x, y1, . . . , yN ) = U (x) + Uhb(x, y1, . . . , yN ), (A1)

where U (x) is the double-well potential (5). The equations of
motion for x(t ) and the yi(t ) are then given by

mẍ(t ) = −
N∑

i=1

ki{ fi[x(t )] − yi(t )}∂x fi[x(t )]

− (∂xU )[x(t )], (A2)

γiẏi(t ) = ki{ fi[x(t )] − yi(t )} + Fi(t ). (A3)

The random forces Fi are Gaussian white noise with
zero mean, 〈Fi(t )〉 = 0, and covariances 〈Fi(t )Fj (t ′)〉 =
2γikBT δi jδ(t − t ′), so that the Langevin Eq. (A3) obeys the
fluctuation-dissipation relation. To obtain a GLE for only the
reaction coordinate x(t ), we eliminate the degrees of freedom
yi(t ) in Eq. (A2). For this, we use the formal solution of
Eq. (A3), which is given by

yi(t ) = yi(0)e−t/τi + τ−1
i

∫ t

0
dt ′ e−(t−t ′ )/τi fi[x(t ′)]

+
∫ t

0
dt ′ e−(t−t ′ )/τi

Fi(t )

γi
(A4)

= {yi(0) − fi[x(0)]}e−t/τi + fi[x(t )]

−
∫ t

0
dt ′ e−(t−t ′ )/τi∂x fi[x(t ′)]ẋ(t ′)

+
∫ t

0
dt ′ e−(t−t ′ )/τi

Fi(t )

γi
, (A5)

where we define the relaxation time of reservoir i as τi =
γi/ki. Substituting the formal solution for yi(t ) into Eq. (A2),
we obtain

mẍ(t ) = −
∫ t

0
�[t − t ′, x(t ), x(t ′)]ẋ(t ′) dt ′

− ∂xU [x(t )] + η[x(t ), t] (A6)

with the space-inhomogeneous memory function

�[t − t ′, x(t ), x(t ′)]

=
N∑

i=1

γi

τi
∂x fi[x(t )]e−(t−t ′ )/τi∂x fi[x(t ′)], (A7)
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and the random force

η[x(t ), t] = −
N∑

i=1

γi

τi
∂x fi[x(t )]e−t/τi{ fi[x(0)] − yi(0)}

+
N∑

i=1

1

τi

∫ t

0
dt ′ ∂x fi[x(t )]e−(t−t ′ )/τi Fi(t

′). (A8)

How the coupling of the reaction coordinate to reservoir
i varies with x(t ) is determined by the function fi[x(t )]. To
obtain an on-off coupling depending on the value of x(t ), as
used in Eqs. (2) and (3), we choose functions

fi(x) =
⎧⎨⎩x, x ∈ Xi

min(Xi ), x < min(Xi )
max(Xi ), x � max(Xi ),

, (A9)

where Xi is a spatial domain, which we assume to be a single
interval, within which x(t ) couples to reservoir i. With this
definition, the spatial derivative of fi is the coupling function,

(∂x fi )(x) = χi(x) :=
{

1, x ∈ Xi

0, x /∈ Xi
, (A10)

so that Eqs. (A2) and (A3) couple x(t ) and yi(t ) if and only if
x(t ) ∈ Xi, equivalent to a local memory kernel in that regime;
cf. Eq. (A7). Note that, strictly speaking, the derivative ∂x fi

is not single-valued at the two points, x = min(Xi ), max(Xi );
since the probability that the reaction coordinate takes either
one of these values is zero, this is not an issue.

To simulate the GLE (1), we always use the equivalent for-
mulation in terms of a dimensionless version of the Markovian
system of Eqs. (A2) and (A3), given in Appendix A 3.

2. Generalized fluctuation-dissipation relation

We now show that the memory kernel (A7) and the ran-
dom force (A8) obey the generalized fluctuation-dissipation
relation

〈η[x(t ), t]η[x(t ′), t ′]〉 = kBT �[x(t ), x(t ′), t − t ′]. (A11)

To compute the autocorrelation on the left-hand side of
Eq. (A11) for all times t , t ′, and not just for times larger
than the longest initial relaxation time maxi{τi} of the heat
bath, we need to specify initial conditions yi(0) for the
auxiliary variables, which appear in Eq. (A8). For this we
assume that, for given x(0), the yi(0) are distributed accord-
ing to the Boltzmann distribution pertaining to the potential
Uhb, so that yi(0) − fi[x(0)] are given by a Gaussian distri-
bution with zero mean and variance 〈{yi(0) − fi[x(0)]}2〉 =
kBT τi/γi. With this initial condition, the autocorrelation of the
noise η[x(t ), t] follows as

〈η[x(t ), t]η[x(t ′), t ′]〉

=
N∑

i=1

(γi

τi

)2
χi[x(t )]χi[x(t ′)]e−(t+t ′ )/τi〈[ fi[x(0)] − yi(0)]2〉

+
N∑

i=1

1

τ 2
i

∫ t

0
dt ′′

∫ t ′

0
dt ′′′ χi[x(t )]χi[x(t ′)]

× e−(t−t ′′+t ′−t ′′′ )/τi〈Fi(t
′′)Fi(t

′′′)〉.

=
N∑

i=1

kBT
γi

τi
χi[x(t )]χi[x(t ′)]e−(t+t ′ )/τi

+
N∑

i=1

1

τ 2
i

χi[x(t )]χi[x(t ′)]e−(t+t ′ )/τi

×
∫ t

0
dt ′′

∫ t ′

0
dt ′′′ e(t ′′+t ′′′ )/τi 2γikBT δ(t ′′ − t ′′′)

=
N∑

i=1

kBT
γi

τi
χi[x(t )]χi[x(t ′)]e−(t+t ′ )/τi

+
N∑

i=1

2kBT
γi

τ 2
i

χi[x(t )]χi[x(t ′)]e−(t+t ′ )/τi

×
∫ min(t,t ′ )

0
dt ′′ e2t ′′/τi

=
N∑

i=1

kBT
γi

τi
χi[x(t )]χi[x(t ′)]e−|t−t ′|/τi . (A12)

By comparing the result (A12) with the memory kernel (A7),
we observe that the generalized fluctuation-dissipation rela-
tion Eq. (A11) holds.

3. Dimensionless formulation of the GLE

In the present section, we give the dimensionless version of
both the GLE (1), as well as the equivalent Markovian system
Eqs. (A2) and (A3). This in particular makes explicit how
many independent parameters the GLE model has.

Using the typical length scale L of the potential Eq. (5), and
the thermal energy kBT ≡ β−1 as energy scale, we define the
diffusive time, τD = βL2γ , which is the typical time a freely
diffusing particle with friction constant γ = ∑

i γi needs to
travel a distance L in a flat potential landscape. We further-
more define the inertial timescale τm = m/γ , on which inertia
is dissipated.

Using the scales L, τD, τm, β, we rewrite the coupled
Langevin Eqs. (A2) and (A3) in dimensionless form as

τm

τD

¨̃x(t̃ ) = −
N∑

i=1

γi

γ

τD

τi
{ f̃i[x̃(t̃ )] − ỹi(t̃ )}∂x̃ f̃i[x̃(t̃ )]

− (∂x̃Ũ )[x̃(t̃ )], (A13)

˙̃yi(t̃ ) = τD

τi
{ f̃i[x̃(t̃ )] − ỹi(t̃ )} +

√
γ

γi
F̃i(t̃ ), (A14)

where t̃ := t/τD, x̃(t̃ ) := x(τDt̃ )/L, ˙̃x(t̃ ) = τDẋ(τDt̃ )/L,
¨̃x(t̃ ) = τ 2

Dẍ(τDt̃ )/L are dimensionless time, position,
velocity and acceleration. −(∂x̃Ũ )(x̃) is the dimensionless
deterministic force corresponding to the quartic potential (5)
and given by

−(∂x̃Ũ )(x̃) = −4Ũ0(x̃2 − 1)x̃ (A15)

with dimensionless barrier height Ũ0 := βU0.
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The dimensionless coupling between reaction coordinate
and heat bath is given by f̃i(x̃) := fi(Lx̃)/L, so that

f̃i(x̃) =
⎧⎨⎩x̃, x̃ ∈ X̃i

min(X̃i ), x̃ < min(X̃i )
max(X̃i ), x̃ � max(X̃i )

, (A16)

where X̃i = Xi/L, so that

(∂x̃ f̃i )(x̃) = χ̃i(x̃) =
{

1, x̃ ∈ X̃i,

0, x̃ /∈ X̃i.
(A17)

The dimensionless random forces F̃i(t̃ ) =
L/(kBT )

√
γ /γiFi(t ) are Gaussian white noise with zero

mean, and covariances 〈F̃i(t̃ )F̃j (t̃ ′)〉 = 2δi jδ(t̃ − t̃ ′).
As in Appendix A 1, we formally solve Eq. (A14), and sub-

stitute the result into Eq. (A13), to obtain the dimensionless
GLE

τm

τD

¨̃x(t̃ ) = −
∫ t̃

0
�̃[t̃ − t̃ ′, x̃(t̃ ), x̃(t̃ − t̃ ′)] ˙̃x(t̃ ′) dt̃ ′

− (∂x̃Ũ )[x̃(t̃ )] + η̃[x̃(t̃ ), t̃], (A18)

with the dimensionless space-inhomogeneous memory kernel

�̃[t̃ − t̃ ′, x̃(t̃ ), x̃(t̃ ′)]

=
N∑

i=1

γi

γ

τD

τi
χ̃i[x̃(t̃ )]χ̃i[x̃(t̃ ′)] exp

[
−τD

τi
(t̃ − t̃ ′)

]
, (A19)

and the dimensionless random force η̃[x̃(t̃ ), t̃] :=
βη[x(t ), t]/L. Instead of explicitly eliminating the heat-bath
variables, Eqs. (A18) and (A19), can also be obtained by
directly recasting Eqs. (A6) and (A7), in dimensionless
form. Similarly to Eq. (A11), the dimensionless memory
kernel �̃ and random force η̃ obey the generalized
fluctuation-dissipation theorem

〈η̃[x̃(t̃ ), t̃]η̃[x̃(t̃ ′), t̃ ′]〉 = �̃[t̃ − t̃ ′, x̃(t̃ ), x̃(t̃ ′)]. (A20)

APPENDIX B: RATE THEORIES

1. Formulas for rate theories considered in the main text

In the present section we recall the formulas used to evalu-
ate the various rate theories we consider in the main text.

a. Transition-state theory

While we do not explicitly show results from transition-
state theory (TST) [58] in the main text, the TST escape rate
appears in several of the rate theories we consider. According
to TST, for a parabolic free-energy in the reactant state, the
mean escape time is given as [58]

τTST = 2π

ωmin
eβU0 , (B1)

where as before U0 denotes the barrier height, β−1 = kBT is
the thermal energy, and the well frequency ωmin = √

U ′′
min/m

contains the curvature U ′′
min := U ′′(xmin) at the minimum xmin

of the potential well from which the particle escapes.

b. Kramers’ theory

Kramers considered the escape from a potential well for a
particle described by the Markovian inertial Langevin equa-

tion, for both the limits of medium-to-high friction, and low
friction [11]. For the medium-to-high friction regime he ob-
tained

τ hf
Kr =

[(
γ 2

4m2
+ ω2

max

)1/2

− γ

2m

]−1

ωmaxτTST, (B2)

while in the low-friction limit, he derived

τ lf
Kr = m

γ βU0
eβU0 , (B3)

where the barrier frequency ωmax = √−U ′′
max/m contains the

curvature U ′′
max := U ′′(xmax) at the barrier top xmax. Note the

opposite scaling of both equations with respect to the friction
constant γ : While for medium-to-high friction it holds that
τ hf

Kr ∼ γ , for low friction we have τ lf
Kr ∼ γ −1.

c. Mel’nikov and Meshkov theory

Mel’nikov and Meshkov [15] (MM) derived a solution to
the Kramers’ problem which is valid for all values of the
friction, and hence bridges the two asymptotic expressions
Eqs. (B2) and (B3). The MM result is given by

τMM = A−1(
)

[(
γ 2

4m2
+ ω2

max

)1/2

− γ

2m

]−1

ωmaxτTST,

(B4)

A(
) = exp

[
2

π

∫ π
2

0
ln[1 − e−
/[4 cos2(x)]]dx

]
, (B5)


 = 2
√

2
γ√
m

β

∫ 0

−√
2L

√
U0 − U (x) dx. (B6)

d. Grote and Hynes theory

While both Kramers’ and Mel’nikov and Meshkov theory
consider Markovian dynamics, Grote and Hynes [13] devel-
oped a theory for the mean first-passage time, τMFP, under
the influence of memory effects. Their expression for the case
where the dynamics in the potential well relax fast, and only
memory effects on the barrier are relevant, is given by

τGH = ωmax

λ
τTST, (B7)

where �̃(λ) denotes the Laplace-transformed memory friction
kernel �(t ) at the barrier top, and the real reactive frequency
λ > 0 is given as the solution of the equation

λ = ω2
max

λ + �̃(λ)/m
. (B8)

Thus, for a single exponential kernel �(t ) = γ e−t/τ /τ , λ is
calculated from the cubic equation

λ3 + λ2

τ
+

( γ

mτ
− ω2

max

)
λ = ω2

max

τ
. (B9)

Note that, either in the inertial, m → ∞, or in the long
memory limit, τ → ∞, it follows that λ = ωmax and the GH
theory collapses onto the transition-state theory result, τGH =
τTST in Eq. (B7).

Furthermore, in the case of instantaneous, i.e., delta-
correlated friction, �(t ) = 2γ δ(t ) and �̃(λ) = γ , it follows
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λ = (γ 2/(4m2) + ω2
max)1/2 − γ /(2m), which results in τGH =

τ hf
Kr, the Kramers high-friction result in Eq. (B2).

e. Heuristic formula

In our previous work we constructed a heuristic formula
that agrees with both the theory by Pollak et al. [34] (PGH)
and numerical simulations of τMFP in the double-well potential
Eq. (5), and a GLE with a global single-exponential memory
kernel with friction magnitude γ and memory time τ [21,35].
Using the diffusive and inertial timescales τD = γ βL2 and
τm = m/γ , the heuristic formula is given by

τemp.

τD
= eβU0

βU0

[
π

2
√

2

(
1 + 10βU0

τ

τD

)−1
+ τm

τD

+ 2
√

βU0
τm

τD
+ 4βU0

τ 2

τ 2
D

]
. (B10)

2. Evaluation of rate theories for a space-inhomogeneous
memory kernel

Whenever we evaluate a rate theory for the effective fric-
tion parameters of a region, we use the respective regional
friction and memory parameters, or equivalently τi, τD,i =
L2βγi, τm,i = m/γi. On the other hand, in plots we always
rescale the τMFP as well as the parameters using the diffusive-
and inertial times τD = L2βγ , τm = m/γ , which correspond
to the total friction magnitude γ = ∑

i γi. In the present sec-
tion we state the relevant relations between these local and
global timescales.

The relation between the local and global diffusive and
inertial timescales is given by

τD,i = L2βγi = γi

γ
L2βγ = γi

γ
τD, (B11)

τm,i = m

γi
= γ

γi

m

γ
= γ

γi
τm, (B12)

so that

τm,i

τD,i
=

(
γ

γi

)2
τm

τD
, (B13)

τi

τD,i
= γ

γi

τi

τD
, (B14)

τMFP

τD,i
= γ

γi

τMFP

τD
. (B15)

Therefore, if we want to calculate τMFP/τD for region i using
a rate theory for globally homogeneous friction, we have to
evaluate

τMFP

τD
= γi

γ

τMFP

τD,i

∣∣∣∣
(γ /γi )2τm/τD, (γ /γi )τi/τD

, (B16)

where the first argument (γ /γi )2τm/τD is the argument for
the dimensionless inertial timescale τm/τD in the rate theory,
and the second argument (γ /γi )τi/τD is the argument for the
dimensionless single-exponential memory τ�/τD in the rate
theory.

(a)

(b)

FIG. 4. MFPT, τMFP/τD, for various single-exponential barrier-
and well-memory friction parameters, compared with analytic pre-
dictions given by Grote and Hynes [13] [GH, solid line in (a)],
Mel’nikov and Meshkov [15] (MM, dotted lines), Pollak et al. [34]
(PGH, evaluated using the heuristic formula [21]), and transition-
state theory (TST, black broken lines). The numerical data are shown
for equal barrier and well-friction times, τB/τD = τW/τD = 10−3,
and the inertial timescale is fixed in the high-friction regime τm/τD =
10−3. Dark blue square markers denote data for which the local
friction timescales are kept constant, τB/τD,B = τW/τD,W = 10−3,
instead of the global ones. (a) Results for the limit γB/γ � 1, the
limit of Markovian low friction on the barrier. (b) Results for the
limit γW/γ � 1, the limit of Markovian low friction in the well.

APPENDIX C: FURTHER COMPARISONS OF
NUMERICAL DATA WITH RATE THEORIES

1. Very unequal friction coefficients in well and barrier regions

In Fig. 2(d) above we show both the well- and barrier-
evaluated MM predictions for high friction, τm/τD = 10−4.
Both curves show a nonmonotonic behavior as a function
of the barrier friction magnitude γB/γ : Whereas the barrier-
evaluated MM theory displays a minimum at small γB/γ ,
the well-evaluated MM prediction for τMFP becomes mini-
mal at γB/γ close to 1. We here investigate these two limits
in detail by performing simulations for both γB/γ � 1 and
1 − γB/γ = γW/γ � 1. We show the results in Fig. 4, where
we consider an inertial timescale of τm/τD = 10−3 and equal
friction timescales in the well and barrier, τB/τD = τW/τD =
10−3.

In Fig. 4(a) we consider the limit γB/γ � 1, i.e., the limit
of Markovian low friction on the barrier. While the MM
and PGH theories, both evaluated for the barrier friction pa-
rameters, show a nonmonotonic trend (namely the Kramers
turnover), the numerical τMFP (light green circles) levels off to
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(a)

(b)

FIG. 5. MFPT, τMFP/τD, for various single-exponential barrier-
and well-friction parameters, shown as a function of the barrier
height βU0. The numerical data are shown for two well-friction
times, τW/τD = 10−4 and τW/τD = 1, fixed barrier-friction time
τB/τD = 1 (a) and τB/τD = 10−3 (b), always for equal friction con-
stants γB/γ = γW/γ = 1/2. The inertial timescale is fixed in the
high-friction regime τm/τD = 10−4. For comparison, predictions by
Grote and Hynes [13] (GH, broken lines) and Pollak et al. [34]
(PGH, solid lines, evaluated using the heuristic formula [21]) are also
shown.

a constant for small γB/γ , with a value close to the prediction
of transition-state theory (black broken line). This limit is
also correctly recovered by the GH theory evaluated for the
barrier friction parameters (light green solid line). Therefore,
for γB/γ � 1, the GH theory outperforms MM theory and
PGH theory. This is in contrast to the results shown in the
main text in Figs. 2(a), 2(d), and 2(e), where the local friction
magnitudes are considered to be within one order of magni-
tude, and the well-friction evaluated MM theory describes the
numerical data correctly.

We discuss the opposite limit γW/γ � 1 in Fig. 4(b). Here
the numerical τMFP (light green circles) is consistent with
both the MM and PGH theories, evaluated using the barrier
parameters, and markedly different from the predictions of
transition-state theory and the PGH theory evaluated using the
well parameters. The agreement of barrier-evaluated theories
and the numerical data indicates that the system is described
by the Kramers high-friction limit. At first sight this might
seem surprising, because for γW/γ � 1 the local dynamics in
the well is clearly underdamped, as for γW/γ = 10−3 we have
τm,W/τD,W = 103. However, since for γW/γ � 1 we have
τD,W � τD,B, even though the mean time a particle in the well
needs to reach the barrier is a large multiple of τD,W, this time

may still be much smaller than the time to diffusively cross the
barrier (which depends on τD,B). Therefore, for γW/γ � 1,
even though the well dynamics is in the energy diffusion limit,
the crossing over the barrier can still be the rate-limiting step
of the escape process.

Furthermore, we note that in both Figs. 4(a) and 4(b),
for the lowest value of the local friction magnitude γi/γ =
10−3, the local friction times, τi/τD,i = 1, are not anymore in
the Markovian limit. To exclude local non-Markovian effects
influencing the shown τMFP, we also show numerical data
for constant local friction times, τB/τD,B = τW/τD,W = 10−3

(dark blue squares) in Figs. 4(a) and 4(b). These data are
almost identical to the data at constant τB/τD, τW/τD, so we
conclude that non-Markovian effects remain negligible for the
parameter regime shown.

2. Variation of barrier height

In the main text, we consider numerical results and rate
theories for the barrier height βU0 = 3. In Fig. 5 we compare
numerical results for barrier heights ranging from βU0 = 2 to
βU0 = 7 to rate-theory predictions, and find that conclusions
drawn in the main text remain true also for larger barrier
heights.

While in Fig. 5(a) we show results for non-Markovian
barrier dynamics τB/τD = 1, in Fig. 5(b) we consider a barrier
with Markovian dynamics, τB/τD = 0.001. For both subplots
we use γW/γ = γB/γ = 0.5, i.e., an equal partitioning of the
total friction magnitude to well and barrier, and high friction
τm/τD = 10−4. For both subplots, we consider two represen-
tative parameters for the well-friction time τW/τD. The results
for τW/τD = 10−4, shown as light green circles in Fig. 5,
correspond to the Markovian high-well-friction regime, for
which the dynamics are predicted by the GH theory. The dark
blue squares in the figure correspond to τMFP for well-friction
time τW/τD = 1, which corresponds to the long-well-memory
regime where τMFP is predicted by the PGH theory, evaluated
using the memory kernel parameters at the potential well. As
Fig. 5(b) demonstrates, the “Markovian-barrier acceleration”
regime discussed in detail in the main text also exists for larger
barrier heights.

Overall, Fig. 5 shows that the predictions from the main
text are consistent with the numerical data for all barrier
heights βU0 ∈ [2, 7] considered here. In fact the predictions
seem to improve for higher barriers. The exponential depen-
dence of τMFP on the barrier-height, known since Arrhenius
[59], is also well visible in our semilogarithmic representation
of the data.

3. Variation of inertial timescale

In Fig. 3 we consider barrier crossing for the high-friction
regime τm/τD = 10−4, while the friction magnitudes are equal
γB/γ = γW/γ = 0.5 and the friction memory times in the
well τW/τD and on the barrier τB/τD are varied. In Fig. 6
we show additional numerical and analytical τMFP for larger
inertial times. We consider the inertial times τm/τD = 10−4

[Figs. 6(a)–6(c)], 10−2 [Figs. 6(d)–6(f)], and 1 [Figs. 6(g)–
6(i)]. While the first column of Fig. 6 shows the rescaled τMFP

as a function of the barrier-friction time τB/τD for various
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. MFPT, τMFP/τD, for different barrier memory friction, and well memory friction, obtained from numerical simulations (data points)
and compared with analytic predictions given by Grote and Hynes [13] (GH, broken lines) and Pollak et al. [34] (PGH, solid lines, evaluated
using the heuristic formula [21]). The data are shown for various barrier-friction τB/τD and well-friction times τW/τD and equal friction
magnitudes γB/γ = γW/γ = 0.5. The inertial timescale is constant and different in each row (a–c: τm/τD = 10−4, d–f: τm/τD = 10−2, g–i:
τm/τD = 1). (a, d, g) τMFP plotted over the barrier-friction time τB/τD. The theories are shown for the respective barrier-friction time in black
and in the case of the PGH theory for the well-friction time as colored solid lines. (b, e, h) τMFP plotted over the well-friction time τW/τD. The
theories are shown for the respective well-friction time in black and in the case of the GH theory for the barrier-friction time as colored broken
lines. (c, f, i) Contour plots of agreement of the simulation results with the theoretical predictions. The color denotes whether the simulated
τMFP ∈ [1/3 τtheo, 3 τtheo], where τtheo is calculated using either the GH theory with the barrier-friction parameters or the PGH theory with the
well-friction parameters. The hatching indicates that both theoretical predictions agree with the simulated data. The light blue area denotes the
“Markovian-barrier acceleration” of the PGH prediction for which we define τtheo,MBA = 0.2 τtheo,PGH.

values of the well-friction time τW/τD, in the second column
we vary the well-friction time for several constant values of
the barrier-friction time. In both the first and second columns,
the appropriate analytic predictions including memory effects
are given either by the GH theory, which is evaluated for the
effective barrier-friction parameters, determined by τB (bro-
ken lines) or by the PGH theory (solid lines), which is eval-
uated for the effective well-friction parameters, given by τW.
The third column of Fig. 6 depicts phase diagrams that sum-

marize for which parameters (τB/τD, τW/τD) the numerical
data agree with the predictions of the GH theory or PGH the-
ory. Note that [Figs. 6(a)–6(c)] are replots of Figs. 3(a), 3(d),
and 3(e).

Figure 6 shows that all conclusions drawn in the main
text also hold true as τm/τD is varied, i.e., away from the
high-friction limit. In particular, for larger inertial timescales
τm/τD, the predictions for the τMFP are described glob-
ally by the PGH theory for the well-friction parameters.
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(a) (b)

FIG. 7. MFPT, τMFP/τD, for different barrier memory friction, �B(t ) = γB/τBe−t/τB and well memory friction, �W(t ) = γW/τWe−t/τW ,
obtained from numerical simulations (data points) and compared with analytic predictions given by Mel’nikov and Meshkov [15] (MM) as
well as the predictions by Krishnan et al. [48] (KSR, dotted lines), equivalent to Figs. 2(a) and 2(d). The data are shown for equal memory
times in the Markovian limit with τB/τD = τW/τD = 10−4. (a) τMFP plotted over the inertial timescale τm/τD for different ratios of the barrier
friction constant to total friction γB/γ . (b) τMFP plotted over γB/γ for various τm/τD. The predictions by MM are shown for the effective
barrier-friction parameters, given by γB, as broken lines and for the effective well-friction parameters, given by γW, as solid lines.

(a) (b) (c)

(d) (e) (f)

FIG. 8. MFPT, τMFP/τD, for different barrier memory friction and well memory friction, obtained from numerical simulations (data points)
and compared with analytic predictions given by Grote and Hynes [13] (GH, broken lines) and by Pollak et al. [34] (PGH, solid lines,
evaluated using the heuristic formula [21]), as well as predictions by Krishnan et al. [48] (KSR, dotted lines). The data are shown for various
barrier-friction τB/τD and well-friction times τW/τD and equal friction constants γB/γ = γW/γ = 1/2. The inertial timescale is constant and
different in each row (a–c: τm/τD = 10−4, d–f: τm/τD = 10−2). (a, d) τMFP plotted over the barrier-friction time τB/τD. The prediction by the
PGH theory are shown for the respective barrier-friction time as black and for the well-friction time as colored solid lines. (b, e) τMFP plotted
over the well-friction time τW/τD. The prediction by the PGH theory is shown for the respective well-friction time in black and in the case
of GH theory for the barrier-friction time as colored broken lines. (c, f) Perturbation parameters εB for the barrier region and εW for the well
region and energy loss 
E/(kBT ), both relevant for stability of the KSR theory. The thin black horizontal line denotes the value 1.
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(a) (b)

(c) (d)

FIG. 9. MFPT, τMFP/τD, for various single-exponential barrier- and well-friction parameters, obtained from numerical simulations (data
points) and compared with analytic predictions given by Grote and Hynes [13] [GH, solid line in (a)], Pollak et al. [34] (PGH, evaluated using
the heuristic formula [21]), transition-state theory (TST, black broken lines), as well as the predictions by Krishnan et al. [48] (KSR, dotted
lines). The numerical data are shown for equal barrier and well-friction times, τB/τD = τW/τD = 10−3 and the inertial timescale is fixed in the
high-friction regime τm/τD = 10−3. (a) Results for the limit γB/γ � 1, the limit of Markovian low friction on the barrier. (c) Results for the
limit γW/γ � 1, the limit of Markovian low friction in the well. (b, d) Perturbation parameters εB for the barrier region and εW for the well
region and energy loss 
E/(kBT ), both relevant for stability of the KSR theory. The thin black horizontal line denotes the value 1.

Furthermore, Figs. 6(d) and 6(g) show that the “Markovian-
barrier acceleration” regime is also present for larger inertial
times. On the other hand, the “non-Markovian-barrier accel-
eration” predicted by the GH theory vanishes.

4. Comparison of numerical results to KSR theory

In the present section, we compare our numerical τMFP

with the predictions of a theory for barrier crossing with
space-inhomogeneous memory friction. Krishnan, Singh, and
Robinson (KSR) [48] derived an analytic theory for τMFP in
a piecewise harmonic potential with different well and barrier
memory friction; this theory is based on the formalism by Pol-
lak, Grabert, and Hänggi [34]. The analytical KSR predictions
for τMFP had not been compared to numerical simulations in
the literature.

The KSR model takes as input the memory-friction ker-
nels for the well and barrier regions, for both of which we
consider single exponentials, the particle mass m = τmγ , the
local angular frequencies of the potential for the well, ω0 =
(∂2

x U )(x = −L)/m and barrier ωb = −(∂2
x U )(x = 0)/m, and

the barrier height βU0 = 3, where as before U (x) is the quartic
potential (5).

We now compare the predictions of KSR theory with the
same numerical data as considered in Figs. 2 and 3.

First, in Fig. 7 we consider the data from Fig. 2. For a
detailed discussion of the data we refer to the main text, as this
section focuses on evaluating the quality of the KSR theory
with respect to the other theories. For the Markovian limit, i.e.,
τW/τD = τB/τD � 1, we generally observe good agreement
between numerical data and KSR theory throughout Fig. 7.
However, the predictions by MM using effective local param-
eters perform slightly better in the whole parameter range.
Of course, the true strength of the model by KSR here is
the correct interpolation between barrier- and well-dominated
dynamics, which needs to be chosen by hand in the evaluation
of MM theory. This is most clearly seen in Fig. 2, where
KSR theory switches between the barrier-dominated and well-
dominated MM predictions as τm/τD is increased.

The data of Fig. 3(a) and 3(d) are discussed in this sec-
tion in Figs. 8(a) and 8(b), where τm/τD = 10−4. While
the predictions by KSR again interpolate correctly between
well- and barrier-dominated dynamics, in the regime where
τW/τD � 0.1 and τB/τD � 0.1, we observe significant devia-
tions between the numerical τMFP and the corresponding KSR
prediction. As can be seen clearly in the upper left corner of
Fig. 3(a) and the right side of Fig. 3(b), the numerical and
analytical data can deviate by several orders of magnitude.
For larger inertial timescales, these deviations become smaller
as shown in Figs. 8(c) and 8(d) where τm/τD = 10−2. We
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note that KSR throughout predicts a barrier crossing speedup
as τB/τD is increased [see Figs. 8(a) and 8(d)], whereas the
numerical data display the “Markovian-barrier acceleration”
behavior for τW/τD � 1, for which barrier crossing is in fact
slower as τB/τD is increased. Possible explanations for the
deviations observed in Figs. 7 and 8 are discussed in the
following.

To rationalize the deviations between numerical and an-
alytical predictions, we point out that KSR themselves state
that their theory is not to expected to be reliable if εB �
1 in the barrier region or εW � 1 in the well region (note
that ε and ε′ are used in the original work [48]). The per-
turbation parameters εB, εW represent a measure for the
strength of coupling between reaction coordinate and heat
bath, and are defined as εB = γB/[2mλB(1 + τBλB)2] and
εW = γW/[2mλW(1 + τWλW)2], with λB and λW the GH fre-
quencies which solve Eq. (B8) for the respective memory
kernels (well or barrier). These conditions are easily violated
in the case of small inertial timescales τm = m/γ , as Fig. 8(c)
shows. However, a similar perturbation parameter ε is also
relevant for the applicability of the PGH theory, and those
authors note in their paper that the PGH theory remains valid
even for large ε, if at the same time the energy loss per cycle
through the well region is large, β
E > 1 [34]. More so,
the PGH predictions have been shown to globally agree well
with numerical results obtained from a homogeneous memory
kernel [35].

The clear deviations between KSR theory and the numer-
ical results in Fig. 8(a), observed for small τB/τD and large
τW/τD (dark purple and dark blue lines), can be rationalized
by the simultaneous breakdown of both the conditions on the
pair εB, εW, and β
E : as Fig. 8(c) shows, in the regime where
deviations between theory and numerical data are observed,
εB � 1 while β
E � 1. In contrast to that, Fig. 8(f) shows
the perturbation parameters and energy loss per cycle for

slightly larger inertial times τm/τD = 0.01. Here the condi-
tions εB < 1 and εW < 1 are met and the predictions agree
with the simulation data in Figs. 8(c) and 8(e).

In Fig. 4 we consider τMFP for the cases where γB/γ � 1
and γW/γ � 1, i.e., the the scenario where the well- and
barrier-friction magnitudes are very different. In Figs. 9(a)
and 9(c) we compare the numerical results for τMFP with
KSR theory. As can be observed in Fig. 9(a), KSR theory
(light green dotted line) correctly captures the limit γB/γ �
1, i.e., the limit of Markovian low friction on the barrier.
However, Fig. 9(c) shows that KSR theory does not capture
the opposite limit. For γW/γ � 1, KSR theory predicts a
significant slow-down, which is not confirmed by simulation
data. The breakdown of KSR theory is again understood
by considering the perturbation parameters εB, εW and the
energy loss 
E/(kBT ), which are plotted in Figs. 9(b) and
9(d) for the respective data. As previously discussed for the
data in Fig. 8, KSR theory breaks down whenever the energy
loss per cycle in the well region is small, 
E/(kBT ) � 1,
while the coupling to the barrier heat bath is strong, εB �
1. This is again the case for the data in Fig. 9(c), as can
be seen from the corresponding perturbation parameters in
Fig. 9(d).

In summary, while KSR theory does capture the crossover
from well-dominated to barrier-dominated τMFP, the theory
captures neither the “Markovian-barrier acceleration” regime,
nor the limit γW/γ � 1. This can be explained by the assump-
tions underlying the KSR derivation, which are not fulfilled in
these regimes: In both regimes, the energy exchange with the
well heat bath is weak (small β
E � 1), while simultane-
ously the coupling to the barrier heat bath is strong (εB � 1).
While in the “Markovian-barrier acceleration” regime, the
weak energy exchange in the well is due to long memory, in
the regime γW/γ � 1, the weak energy exchange is because
of the small well friction.
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