565 research outputs found

    Enhanced Magnetic Anisotropy of Mn12-acetate

    Full text link
    Thin films of the Single Molecule Magnet (Mn12-acetate) have been fabricated on a Si-substrate by the Dip-and-Dry method, a simple and robust technique. Atomic force microscopy and X-ray photoelectron spectroscopy characterizations reveal that homogeneous, thin films of a few molecular layers with smoothness at the molecular level are deposited. Significant changes in magnetic properties of Mn12-acetate exposed to the same solvent were observed in zero-field-cooled and field-cooled magnetization, as well as ac-susceptibility measurements. The blocking temperature was found to increase to TB > 10 K at low magnetic fields, indicating an enhanced magnetic anisotropy.Comment: 14 pages, 4 figure

    Anomalous Scaling of Structure Functions and Dynamic Constraints on Turbulence Simulations

    Get PDF
    The connection between anomalous scaling of structure functions (intermittency) and numerical methods for turbulence simulations is discussed. It is argued that the computational work for direct numerical simulations (DNS) of fully developed turbulence increases as Re4Re^{4}, and not as Re3Re^{3} expected from Kolmogorov's theory, where ReRe is a large-scale Reynolds number. Various relations for the moments of acceleration and velocity derivatives are derived. An infinite set of exact constraints on dynamically consistent subgrid models for Large Eddy Simulations (LES) is derived from the Navier-Stokes equations, and some problems of principle associated with existing LES models are highlighted.Comment: 18 page

    Films of Mn12-acetate deposited by low-energy laser ablation

    Full text link
    Thin films of the molecular magnet Mn12-acetate, [Mn12 O12(CH3COO)16 (H2O)4] 2CH3COOH 4H2O, have been prepared using a laser ablation technique with a nitrogen laser at low laser energies of 0.8 and 2 mJ. Chemical and magnetic characterizations show that the Mn12-acetate cores remain intact and the films show similar magnetic properties to those of the parent molecular starting material. In addition, the magnetic data exhibit a peak in the magnetization at 27 K indicating the creation of an additional magnetic phase not noted in previous studies of crystalline phases.Comment: 8 pages, 5 figures, In Press - J. Mag. Mag. Ma

    Processing of ultrafine-size particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Metallurgical & Materials Transactions A 40A(3) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Lack of efficient mixing technology to achieve a uniform distribution of fine-size reinforcement within the matrix and the high cost of producing components have hindered the widespread adaptation of particulate metal matrix composites (PMMCs) for engineering applications. A new rheo-processing method, the melt-conditioning high-pressure die-cast (MC-HPDC) process, has been developed for manufacturing near-net-shape components of high integrity. The MC-HPDC process adapts the well-established high shear dispersive mixing action of a twin-screw mechanism to the task of overcoming the cohesive force of the agglomerates under a high shear rate and high intensity of turbulence. This is followed by direct shaping of the slurry into near-net-shape components using an existing cold-chamber die-casting process. The results indicate that the MC-HPDC samples have a uniform distribution of ultrafine-sized SiC particles throughout the entire sample in the as-cast condition. Compared to those produced by conventional high-pressure die casting (HPDC), MC-HPDC samples have a much improved tensile strength and ductility.EP-SR

    Testing Holographic Principle from Logarithmic and Higher Order Corrections to Black Hole Entropy

    Full text link
    The holographic principle is tested by examining the logarithmic and higher order corrections to the Bekenstein-Hawking entropy of black holes. For the BTZ black hole, I find some disagreement in the principle for a holography screen at spatial infinity beyond the leading order, but a holography with the screen at the horizon does not, with an appropriate choice of a period parameter, which has been undetermined at the leading order, in Carlip's horizon-CFT approach for black hole entropy in any dimension. Its higher dimensional generalization is considered to see a universality of the parameter choice. The horizon holography from Carlip's is compared with several other realizations of a horizon holography, including induced Wess-Zumino-Witten model approaches and quantum geometry approach, but none of the these agrees with Carlip's, after clarifications of some confusions. Some challenging open questions are listed finally.Comment: To appear in JHEP. The corrections in Sec.2 with those that follow are more clearly explained. Careful distingtion between the implications of my results to AdS/CFT and to the holograhic principl

    Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden, Svalbard

    Get PDF
    A baseline study of hard-bottom zoobenthos in relation to environmental gradients in Kongsfjorden, a glacial fjord in Svalbard, is presented, based on collections from 1996 to 1998. The total species richness in 62 samples from 0 to 30 m depth along five transects was 403 species. Because 32 taxa could not be identified to species level and because 11 species are probably new to science, the total number of identified species was 360. Of these, 47 species are new for Svalbard waters. Bryozoa was the most diverse group. Biogeographic composition revealed features of both Arctic and sub-Arctic properties of the fauna. Species richness, frequency of species occurrence, mean abundance and biomass generally decreased towards the tidal glaciers in inner Kongsfjorden. Among eight environmental factors, depth was most important for explaining variance in the composition of the zoobenthos. The diversity was consistently low at shallow depths, whereas the non-linear patterns of species composition of deeper samples indicated a transitional zone between surface and deeper water masses at 15–20 m depth. Groups of “colonial” and “non-colonial” species differed in diversity, biogeographic composition and distribution by location and depth as well as in relation to other environmental factors. “Non-colonial” species made a greater contribution than “colonial” species to total species richness, total occurrence and biomass in samples, and were more influenced by the depth gradient. Biogeographic composition was sensitive to variation of zoobenthic characteristics over the studied depth range. A list of recorded species and a description of sampling sites are presented

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Modification of forests by people means only 40% of remaining forests have high ecosystem integrity

    Get PDF
    Many global environmental agendas, including halting biodiversity loss, reversing land degradation, and limiting climate change, depend upon retaining forests with high ecological integrity, yet the scale and degree of forest modification remain poorly quantified and mapped. By integrating data on observed and inferred human pressures and an index of lost connectivity, we generate a globally consistent, continuous index of forest condition as determined by the degree of anthropogenic modification. Globally, only 17.4 million km2 of forest (40.5%) has high landscape-level integrity (mostly found in Canada, Russia, the Amazon, Central Africa, and New Guinea) and only 27% of this area is found in nationally designated protected areas. Of the forest inside protected areas, only 56% has high landscape-level integrity. Ambitious policies that prioritize the retention of forest integrity, especially in the most intact areas, are now urgently needed alongside current efforts aimed at halting deforestation and restoring the integrity of forests globally

    Pharmacological inhibition of TBK1/IKKε blunts immunopathology in a murine model of SARS-CoV-2 infection

    Get PDF
    TANK-binding kinase 1 (TBK1) is a key signalling component in the production of type-I interferons, which have essential antiviral activities, including against SARS-CoV-2. TBK1, and its homologue IκB kinase-ε (IKKε), can also induce pro-inflammatory responses that contribute to pathogen clearance. While initially protective, sustained engagement of type-I interferons is associated with damaging hyper-inflammation found in severe COVID-19 patients. The contribution of TBK1/IKKε signalling to these responses is unknown. Here we find that the small molecule idronoxil inhibits TBK1/IKKε signalling through destabilisation of TBK1/IKKε protein complexes. Treatment with idronoxil, or the small molecule inhibitor MRT67307, suppresses TBK1/IKKε signalling and attenuates cellular and molecular lung inflammation in SARS-CoV-2-challenged mice. Our findings additionally demonstrate that engagement of STING is not the major driver of these inflammatory responses and establish a critical role for TBK1/IKKε signalling in SARS-CoV-2 hyper-inflammation.Tomalika R. Ullah ... Benjamin T. Kile ... et al
    corecore