26 research outputs found

    A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing

    Get PDF
    Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.A.R., F.J.M. and P.C. acknowledge the support of the Spanish ‘Ministerio de Economia y Competitividad’ under Grants BIA2014-59643-R and BIA2015-70644-R. This work was critically supported by the US Geological Survey under Grant/Cooperative Agreement G15AC00426 and from the US DOD Strategic Environmental Research and Development Program (SERDP Project RC-2644) through the NOAA National Centers for Environmental Information (NCEI). Dynamic atmospheric corrections (storm surge) are produced by CLS Space Oceanography Division using the Mog2D model from Legos and distributed by Aviso, with support from CNES (http://www.aviso.altimetry.fr/). Marine data from global reanalysis are provided by IHCantabria and are available for research purposes upon request at [email protected]

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses

    Venous blood platelets decrease during allergen-induced asthmatic reactions.

    No full text
    To determine whether circulating platelets alter during asthmatic reactions induced by allergens, we studied nine subjects previously shown to develop an early or dual asthmatic reaction after inhalation challenge with extracts of house dust mite or grass pollen. In each subject, FEV1, circulating platelets and leucocytes were measured before, 15, 30 and 60 min, and 2, 4, 6 and 8 hr after inhalation of allergen and diluent control administered in a single-blind, randomized fashion. The same procedure was repeated in six of the nine subjects after bronchoconstriction induced by methacholine. Each subject developed an early asthmatic reaction after allergen inhalation challenge, which was followed by a late asthmatic reaction in six subjects and by an equivocal late asthmatic reaction in two of them (fall in FEV1 of 15 and 17% respectively). Compared with the control day, circulating platelets significantly decreased during the allergen-induced early asthmatic reaction (P less than 0.025, at 30 min). Platelet counts returned to baseline values within 4 hr and remained steady thereafter both in subjects who did and did not develop a late asthmatic reaction. No changes in platelet counts occurred after bronchoconstriction induced by methacholine. Diurnal increase of leucocyte numbers occurred after challenge with both allergen and diluent control. These results suggest that platelets may be involved in the pathogenesis of allergen-induced asthmatic reactions
    corecore