7,197 research outputs found

    Accounting for thermodynamic non-ideality in the Guinier region of small-angle scattering data of proteins

    Get PDF
    Hydrodynamic studies of the solution properties of proteins and other biological macromolecules are often hard to interpret when the sample is present at a reasonably concentrated solution. The reason for this is that solutions exhibit deviations from ideal behaviour which is manifested as thermodynamic non-ideality. The range of concentrations at which this behaviour typically is exhibited is as low as 1-2 mg/ml, well within the range of concentrations used for their analysis by techniques such as small-angle scattering. Here we discuss thermodynamic non-ideality used previously used in the context of light scattering and sedimentation equilibrium analytical ultracentrifugation and apply it to the Guinier region of small-angle scattering data. The results show that there is a complementarity between the radially averaged structure factor derived from small-angle X-ray scattering/small-angle neutron scattering studies and the second virial coefficient derived from sedimentation equilibrium analytical ultracentrifugation experiments

    The barocaloric effect: A Spin-off of the Discovery of High-Temperature Superconductivity

    Full text link
    Some key results obtained in joint research projects with Alex M\"uller are summarized, concentrating on the invention of the barocaloric effect and its application for cooling as well as on important findings in the field of high-temperature superconductivity resulting from neutron scattering experiments.Comment: 26 pages, 9 figure

    Outbreak of Aeromonas hydrophila wound infections association with mud football

    Get PDF
    On 16 February 2002, a total of 26 people presented to the emergency department of the local hospital in the rural town of Collie in southwest Western Australia with many infected scratches and pustules distributed over their bodies. All of the patients had participated in a “mud football” competition the previous day, in which there had been 100 participants. One patient required removal of an infected thumbnail, and another required surgical debridement of an infected toe. Aeromonas hydrophila was isolated from all 3 patients from whom swab specimens were obtained. To prepare the mud football fields, a paddock was irrigated with water that was pumped from an adjacent river during the 1-month period before the competition. A. hydrophila was subsequently isolated from a water sample obtained from the river. This is the first published report of an outbreak of A. hydrophila wound infections associated with exposure to mud.Hassan Vally, Amanda Whittle, Scott Cameron, Gary K. Dowse and Tony Watso

    Parameterized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method

    Get PDF
    Thanks to the recent discoveries of gravitational wave signals from binary black hole mergers by Advanced Laser Interferometer Gravitational Wave Observatory and Advanced Virgo, the genuinely strong-field dynamics of spacetime can now be probed, allowing for stringent tests of general relativity (GR). One set of tests consists of allowing for parametrized deformations away from GR in the template waveform models and then constraining the size of the deviations, as was done for the detected signals in previous work. In this paper, we construct reduced-order quadratures so as to speed up likelihood calculations for parameter estimation on future events. Next, we explicitly demonstrate the robustness of the parametrized tests by showing that they will correctly indicate consistency with GR if the theory is valid. We also check to what extent deviations from GR can be constrained as information from an increasing number of detections is combined. Finally, we evaluate the sensitivity of the method to possible violations of GR.Comment: 19 pages, many figures. Matches PRD versio

    Clinical outcomes and cost-effectiveness of COVID-19 vaccination in South Africa

    Get PDF
    Low- and middle-income countries are implementing COVID-19 vaccination strategies in light of varying vaccine efficacies and costs, supply shortages, and resource constraints. Here, we use a microsimulation model to evaluate clinical outcomes and cost-effectiveness of a COVID-19 vaccination program in South Africa. We varied vaccination coverage, pace, acceptance, effectiveness, and cost as well as epidemic dynamics. Providing vaccines to at least 40% of the population and prioritizing vaccine rollout prevented >9 million infections and >73,000 deaths and reduced costs due to fewer hospitalizations. Model results were most sensitive to assumptions about epidemic growth and prevalence of prior immunity to SARS-CoV-2, though the vaccination program still provided high value and decreased both deaths and health care costs across a wide range of assumptions. Vaccination program implementation factors, including prompt procurement, distribution, and rollout, are likely more influential than characteristics of the vaccine itself in maximizing public health benefits and economic efficiency

    A Superglass Phase of Interacting Bosons

    Get PDF
    We introduce a Bose-Hubbard Hamiltonian with random disordered interactions as a model to study the interplay of superfluidity and glassiness in a system of three-dimensional hard-core bosons at half-filling. Solving the model using large-scale quantum Monte Carlo simulations, we show that these disordered interactions promote a stable superglass phase, where superflow and glassy density localization coexist in equilibrium without exhibiting phase separation. The robustness of the superglass phase is underlined by its existence in a replica mean-field calculation on the infinite-dimensional Hamiltonian.Comment: 4 pages 3 figures: to appear in Phys. Rev. Lett

    A Facile Method for Separation of the Cryptic Methionine Sulfoxide Diastereomers, Structural Assignment and DFT Analysis

    Get PDF
    Methionine (Met) oxidation is an important biological redox node, with hundreds if not thousands of protein targets. The process yields methionine oxide (MetO). It renders the sulfur chiral, producing two distinct, diastereomerically related products. Despite the biological significance of Met oxidation, a reliable protocol to separate the resultant MetO diastereomers is currently lacking. This hampers our ability to make peptides and proteins that contain stereochemically defined MetO to then study their structural and functional properties. We have developed a facile method that uses supercritical CO₂ chromatography and allows obtaining both diastereomers in purities exceeding 99 %. ¹H NMR spectra were correlated with X‐ray structural information. The stereochemical interconversion barrier at sulfur was calculated as 45.2 kcal mol⁻¹, highlighting the remarkable stereochemical stability of MetO sulfur chirality. Our protocol should open the road to synthesis and study of a wide variety of stereochemically defined MetO‐containing proteins and peptides
    corecore