293 research outputs found
Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
Facilitative parenting and children's social, emotional and behavioural adjustment
Facilitative parenting (FP) supports the development of children’s social and emotional competence and effective peer relationships. Previous research has shown that FP discriminates between children bullied by peers from children who are not bullied, according to reports of teachers. This study investigates the association between FP and children’s social, emotional and behavioral problems, over and above the association with dysfunctional parenting (DP). 215 parents of children aged 5–11 years completed questionnaires about parenting and child behavior, and children and teachers completed measures of child bullying victimization. As predicted, FP accounted for variance in teacher reports of children’s bullying victimization as well as parent reports of children’s social and emotional problems and prosocial behavior better than that accounted for by DP. However for children’s reports of peer victimization the whole-scale DP was a better predictor than FP. Contrary to predictions, FP accounted for variance in conduct problems and hyperactivity better than DP. When analyses were replicated substituting subscales of dysfunctional and FP, a sub-set of FP subscales including Warmth, Supports Friendships, Not Conflicting, Child Communicates and Coaches were correlated with low levels of problems on a broad range of children’s adjustment problems. Parent–child conflict accounted for unique variance in children’s peer victimization (teacher report), peer problems, depression, emotional problems, conduct problems and hyperactivity. The potential relevance of FP as a protective factor for children against a wide range of adjustment problems is discussed
How Accessible Was Information about H1N1 Flu? Literacy Assessments of CDC Guidance Documents for Different Audiences
We assessed the literacy level and readability of online communications about H1N1/09 influenza issued by the Centers for Disease Control and Prevention (CDC) during the first month of outbreak. Documents were classified as targeting one of six audiences ranging in technical expertise. Flesch-Kincaid (FK) measure assessed literacy level for each group of documents. ANOVA models tested for differences in FK scores across target audiences and over time. Readability was assessed for documents targeting non-technical audiences using the Suitability Assessment of Materials (SAM). Overall, there was a main-effect by audience, F(5, 82) = 29.72, P<.001, but FK scores did not vary over time, F(2, 82) = .34, P>.05. A time-by-audience interaction was significant, F(10, 82) = 2.11, P<.05. Documents targeting non-technical audiences were found to be text-heavy and densely-formatted. The vocabulary and writing style were found to adequately reflect audience needs. The reading level of CDC guidance documents about H1N1/09 influenza varied appropriately according to the intended audience; sub-optimal formatting and layout may have rendered some text difficult to comprehend
The Tri-Trophic Interactions Hypothesis: Interactive Effects of Host Plant Quality, Diet Breadth and Natural Enemies on Herbivores
Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI) hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists) should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality) host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia) quality and predators between a specialist (Uroleucon macolai) and a generalist (Aphis gossypii) aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores
Mycobacterium abscessus Glycopeptidolipid Prevents Respiratory Epithelial TLR2 Signaling as Measured by HβD2 Gene Expression and IL-8 Release
Mycobacterium abscessus has emerged as an important cause of lung infection, particularly in patients with bronchiectasis. Innate immune responses must be highly effective at preventing infection with M. abscessus because it is a ubiquitous environmental saprophyte and normal hosts are not commonly infected. M. abscessus exists as either a glycopeptidolipid (GPL) expressing variant (smooth phenotype) in which GPL masks underlying bioactive cell wall lipids, or as a variant lacking GPL which is immunostimulatory and invasive in macrophage infection models. Respiratory epithelium has been increasingly recognized as playing an important role in the innate immune response to pulmonary pathogens. Respiratory epithelial cells express toll-like receptors (TLRs) which mediate the innate immune response to pulmonary pathogens. Both interleukin-8 (IL-8) and human β-defensin 2 (HβD2) are expressed by respiratory epithelial cells in response to toll-like receptor 2 (TLR2) receptor stimulation. In this study, we demonstrate that respiratory epithelial cells respond to M. abscessus variants lacking GPL with expression of IL-8 and HβD2. Furthermore, we demonstrate that this interaction is mediated through TLR2. Conversely, M. abscessus expressing GPL does not stimulate expression of IL-8 or HβD2 by respiratory epithelial cells which is consistent with “masking” of underlying bioactive cell wall lipids by GPL. Because GPL-expressing smooth variants are the predominant phenotype existing in the environment, this provides an explanation whereby initial M. abscessus colonization of abnormal lung airways escapes detection by the innate immune system
MTar: a computational microRNA target prediction architecture for human transcriptome
<p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play an essential task in gene regulatory networks by inhibiting the expression of target mRNAs. As their mRNA targets are genes involved in important cell functions, there is a growing interest in identifying the relationship between miRNAs and their target mRNAs. So, there is now a imperative need to develop a computational method by which we can identify the target mRNAs of existing miRNAs. Here, we proposed an efficient machine learning model to unravel the relationship between miRNAs and their target mRNAs.</p> <p>Results</p> <p>We present a novel computational architecture MTar for miRNA target prediction which reports 94.5% sensitivity and 90.5% specificity. We identified 16 positional, thermodynamic and structural parameters from the wet lab proven miRNA:mRNA pairs and MTar makes use of these parameters for miRNA target identification. It incorporates an Artificial Neural Network (ANN) verifier which is trained by wet lab proven microRNA targets. A number of hitherto unknown targets of many miRNA families were located using MTar. The method identifies all three potential miRNA targets (5' seed-only, 5' dominant, and 3' canonical) whereas the existing solutions focus on 5' complementarities alone.</p> <p>Conclusion</p> <p>MTar, an ANN based architecture for identifying functional regulatory miRNA-mRNA interaction using predicted miRNA targets. The area of target prediction has received a new momentum with the function of a thermodynamic model incorporating target accessibility. This model incorporates sixteen structural, thermodynamic and positional features of residues in miRNA: mRNA pairs were employed to select target candidates. So our novel machine learning architecture, MTar is found to be more comprehensive than the existing methods in predicting miRNA targets, especially human transcritome.</p
Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress
MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition in plants and animals. In this study, a small RNA library was constructed to identify conserved miRNAs as well as novel miRNAs in maize seedling roots under low level phosphorus stress. Twelve miRNAs were identified by high throughput sequencing of the library and subsequent analysis, two belong to conserved miRNA families (miRNA399b and miRNA156), and the remaining ten are novel and one of latter is conserved in gramineous species. Based on sequence homology, we predicted 125 potential target genes of these miRNAs and then expression patterns of 7 miRNAs were validated by semi-RT-PCR analysis. MiRNA399b, Zma-miR3, and their target genes (Zmpt1 and Zmpt2) were analyzed by real-time PCR. It is shown that both miRNA399b and Zma-miR3 are induced by low phosphorus stress and regulated by their target genes (Zmpt1 and Zmpt2). Moreover, Zma-miR3, regulated by two maize inorganic phosphate transporters as a newly identified miRNAs, would likely be directly involved in phosphate homeostasis, so was miRNA399b in Arabidopsis and rice. These results indicate that both conserved and maize-specific miRNAs play important roles in stress responses and other physiological processes correlated with phosphate starvation, regulated by their target genes. Identification of these differentially expressed miRNAs will facilitate us to uncover the molecular mechanisms underlying the progression of maize seedling roots development under low level phosphorus stress
Single-Cell Profiling Reveals the Origin of Phenotypic Variability in Adipogenesis
Phenotypic heterogeneity in a clonal cell population is a well-observed but poorly understood phenomenon. Here, a single-cell approach is employed to investigate non-mutative causes of phenotypic heterogeneity during the differentiation of 3T3-L1 cells into fat cells. Using coherent anti-Stokes Raman scattering microscopy and flow cytometry, adipogenic gene expression, insulin signaling, and glucose import are visualized simultaneously with lipid droplet accumulation in single cells. Expression of adipogenic genes PPARγ, C/EBPα, aP2, LP2 suggests a commitment to fat cell differentiation in all cells. However, the lack of lipid droplet in many differentiating cells suggests adipogenic gene expression is insufficient for lipid droplet formation. Instead, cell-to-cell variability in lipid droplet formation is dependent on the cascade responses of an insulin signaling pathway which includes insulin sensitivity, kinase activity, glucose import, expression of an insulin degradation enzyme, and insulin degradation rate. Increased and prolonged insulin stimulation promotes lipid droplet accumulation in all differentiating cells. Single-cell profiling reveals the kinetics of an insulin signaling cascade as the origin of phenotypic variability in drug-inducible adipogenesis
Resistance to First-Line Anti-TB Drugs Is Associated with Reduced Nitric Oxide Susceptibility in Mycobacterium tuberculosis
Background and objective: The relative contribution of nitric oxide (NO) to the killing of Mycobacterium tuberculosis in human tuberculosis (TB) is controversial, although this has been firmly established in rodents. Studies have demonstrated that clinical strains of M. tuberculosis differ in susceptibility to NO, but how this correlates to drug resistance and clinical outcome is not known. Methods: In this study, 50 sputum smear- and culture-positive patients with pulmonary TB in Gondar, Ethiopia were included. Clinical parameters were recorded and drug susceptibility profile and spoligotyping patterns were investigated. NO susceptibility was studied by exposing the strains to the NO donor DETA/NO. Results: Clinical isolates of M. tuberculosis showed a dose- and time-dependent response when exposed to NO. The most frequent spoligotypes found were CAS1-Delhi and T3_ETH in a total of nine known spoligotypes and four orphan patterns. There was a significant association between reduced susceptibility to NO (>10% survival after exposure to 1mM DETA/NO) and resistance against first-line anti-TB drugs, in particular isoniazid (INH). Patients infected with strains of M. tuberculosis with reduced susceptibility to NO showed no difference in cure rate or other clinical parameters, but a tendency towards lower rate of weight gain after two months of treatment. Conclusion: There is a correlation between resistance to first-line anti-TB drugs and reduced NO susceptibility in clinical strains of M. tuberculosis. Further studies including the mechanisms of reduced NO susceptibility are warranted and could identify targets for new therapeutic interventions
Discovery of a Novel hsp65 Genotype within Mycobacterium massiliense Associated with the Rough Colony Morphology
So far, genetic diversity among strains within Mycobacterium massiliense has rarely been studied. To investigate the genetic diversity among M. massiliense, we conducted phylogenetic analysis based on hsp65 (603-bp) and rpoB (711-bp) sequences from 65 M. massiliense Korean isolates. We found that hsp65 sequence analysis could clearly differentiate them into two distinct genotypes, Type I and Type II, which were isolated from 35 (53.8%) and 30 patients (46.2%), respectively. The rpoB sequence analysis revealed a total of four genotypes (R-I to R-IV) within M. massiliense strains, three of which (R-I, R-II and R-III) correlated with hsp65 Type I, and other (R-IV), which correlated with Type II. Interestingly, genotyping by the hsp65 method agreed well with colony morphology. Despite some exceptions, Type I and II correlated with smooth and rough colonies, respectively. Also, both types were completely different from one another in terms of MALDI-TOF mass spectrometry profiles of whole lipid. In addition, we developed PCR-restriction analysis (PRA) based on the Hinf I digestion of 644-bp hsp65 PCR amplicons, which enables the two genotypes within M. massiliense to be easily and reliably separated. In conclusion, two distinct hsp65 genotypes exist within M. massiliense strains, which differ from one another in terms of both morphology and lipid profile. Furthermore, our data indicates that Type II is a novel M. massiliense genotype being herein presented for the first time. The disparity in clinical traits between these two hsp65 genotypes needs to be exploited in the future study
- …
