117 research outputs found
Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice
Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals,
there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death
receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival
and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic
proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To
investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1
transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional
Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the
macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was
striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells
(TCRβ+
CD4–
CD8–
B220+
) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr
mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating
autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene
by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell
population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the
development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other
haemopoietic cell types
Beyond Implications and Applications: the Story of ‘Safety by Design’
Using long-term anthropological observations at the Center for Biological and Environmental Nanotechnology in Houston, Texas, the article demonstrates in detail the creation of new objects, new venues and new modes of veridiction which have reoriented the disciplines of materials chemistry and nanotoxicology. Beginning with the confusion surrounding the meaning of ‘implications’ and ‘applications’ the article explores the creation of new venues (CBEN and its offshoot the International Council on Nanotechnology); it then demonstrates how the demands for a responsible, safe or ethical science were translated into new research and experiment in and through these venues. Finally it shows how ‘safety by design’ emerged as a way to go beyond implications and applications, even as it introduced a whole new array of controversies concerning its viability, validity and legitimacy
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus
Prohypertensive Effect of Gestational Personal Exposure to Fine Particulate Matter. Prospective Cohort Study in Non-smoking and Non-obese Pregnant Women
Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL-lpr mice
Objectives - Recent investigations in humans and mouse models with lupus have revealed evidence of mitochondrial dysfunction and production of mitochondrial reactive oxygen species (mROS) in T cells and neutrophils. This can provoke numerous cellular changes including oxidation of nucleic acids, proteins, lipids and even induction of cell death. We have previously observed that in T cells from patients with lupus, the increased mROS is capable of provoking oligomerisation of mitochondrial antiviral stimulator (MAVS) and production of type I interferon (IFN-I). mROS in SLE neutrophils also promotes the formation of neutrophil extracellular traps (NETs), which are increased in lupus and implicated in renal damage. As a result, in addition to traditional immunosuppression, more comprehensive treatments for lupus may also include non-immune therapy, such as antioxidants.
Methods - Lupus-prone MRL-lpr mice were treated from weaning for 11 weeks with the mitochondria-targeted antioxidant, MitoQ (200 µM) in drinking water. Mice were then assessed for ROS production in neutrophils, NET formation, MAVS oligomerisation, serum IFN-I, autoantibody production and renal function.
Results - MitoQ-treated mice manifested reduced neutrophil ROS and NET formation, decreased MAVS oligomerisation and serum IFN-I, and reduced immune complex formation in kidneys, despite no change in serum autoantibody.
Conclusions - These findings reveal the potential utility of targeting mROS in addition to traditional immunosuppressive therapy for lupus
Medical visits for chemotherapy and chemotherapy-induced neutropenia: a survey of the impact on patient time and activities
<p>Abstract</p> <p>Background</p> <p>Patients with cancer must make frequent visits to the clinic not only for chemotherapy but also for the management of treatment-related adverse effects. Neutropenia, the most common dose-limiting toxicity of myelosuppressive chemotherapy, has substantial clinical and economic consequences. Colony-stimulating factors such as filgrastim and pegfilgrastim can reduce the incidence of neutropenia, but the clinic visits for these treatments can disrupt patients' routines and activities.</p> <p>Methods</p> <p>We surveyed patients to assess how clinic visits for treatment with chemotherapy and the management of neutropenia affect their time and activities.</p> <p>Results</p> <p>The mean amounts of time affected by these visits ranged from approximately 109 hours (hospitalization for neutropenia) and 8 hours (physician and chemotherapy) to less than 3 hours (laboratory and treatment with filgrastim or pegfilgrastim). The visits for filgrastim or pegfilgrastim were comparable in length, but treatment with filgrastim requires several visits per chemotherapy cycle and treatment with pegfilgrastim requires only 1 visit.</p> <p>Conclusions</p> <p>This study provides useful information for future modelling of additional factors such as disease status and chemotherapy schedule and provides information that should be considered in managing chemotherapy-induced neutropenia.</p
- …
