
ORIGINAL ARTICLE

Antimicrobial activity of zinc and titanium dioxide nanoparticles
against biofilm-producing methicillin-resistant Staphylococcus
aureus

A. Jesline • Neetu P. John • P. M. Narayanan •

C. Vani • Sevanan Murugan

Received: 29 October 2013 / Accepted: 28 February 2014 / Published online: 13 March 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Methicillin-resistant Staphylococcus aureus

(MRSA) is one of the major nosocomial pathogens

responsible for a wide spectrum of infections and the

emergence of bacterial resistance to antibiotics has lead to

treatment drawbacks towards large number of drugs. For-

mation of biofilms is the main contributing factor to anti-

biotic resistance. The development of reliable processes for

the synthesis of zinc oxide nanoparticles is an important

aspect of nanotechnology today. Zinc oxide and titanium

dioxide nanoparticles comprise well-known inhibitory and

bactericidal effects. Emergence of antimicrobial resistance

by pathogenic bacteria is a major health problem in recent

years. This study was designed to determine the efficacy of

zinc and titanium dioxide nanoparticles against biofilm

producing methicillin-resistant S. aureus. Biofilm produc-

tion was detected by tissue culture plate method. Out of 30

MRSA isolates, 22 isolates showed strong biofilm pro-

duction and 2 showed weak and moderate biofilm forma-

tion. Two strong and weak biofilm-producing methicillin-

resistant S. aureus isolates were subjected to antimicrobial

activity using commercially available zinc and titanium

dioxide nanoparticles. Thus, the nanoparticles showed

considerably good activity against the isolates, and it can

be concluded that they may act as promising, antibacterial

agents in the coming years.
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Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is one

of the major nosocomial pathogens responsible for a wide

spectrum of infections which includes skin and soft tissue

infections, pneumonia, bacteraemia, surgical site infections

(SSI), and catheter-related infections (De San et al. 2007;

Emily and Trish 2011). The emergence of bacterial resistance

to antibiotics and its distribution are major health problems

that lead to treatment failure for a large number of drugs

(Julian and Dorothy 2010). Biofilm formation is the main

contributing factor to bacterial antibiotic resistance. Staphy-

lococcus aureus becomes resistant by producing an extra-

cellular polymeric substance (EPS) matrix that is composed

of polysaccharides, nucleic acids, proteins and lipids (Davey

and O’Toole 2000; Kokare et al. 2009). Sessile bacteria

embedded in this EPS matrix are able to withstand the host

immune responses and thereby become less susceptible to

antibiotics, which in turn fail to penetrate inside the biofilm.

Therefore, there is an urgent clinical need to develop novel

antibacterial therapies to destroy biofilms which will hence-

forth, reduce healthcare infections. Nanostructured materials

are attracting a great deal of consideration because of their

capability and selectivity, particularly in biological and

pharmaceutical applications (Wu et al. 2003; Fortner et al.

2005; Li et al. 2005). The most studied aspects of nano-

technology field are its ability to tussle bacterial infections

through the production of nanoparticles (Luo et al. 2007). The

antimicrobial activities of metal oxide nanoparticles and their

selective toxicity to biological systems suggest their potential
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applications as therapeutics, diagnostics, surgical devices and

nanomedicine-based antibacterial agents (Sawai 2003; Laura

et al. 2006; Reddy et al. 2007; Sobha et al. 2010). The

compensation of using these metal oxides’ nanoparticles as

antimicrobial agents is their better efficiency on resistant

bacteria, less toxicity and heat resistance, and among metal

oxide nanoparticles, ZnO nanoparticles have many signifi-

cant features such as chemical and physical stability, high

catalysis activity and effective antibacterial activity (Kalyani

et al. 2006; Matei et al. 2008). Titanium dioxide nanoparticles

(TiO2) decompose organic compounds by the formation and

constant release of hydroxyl radicals and superoxide ions

when exposed to non-lethal ultraviolet (UV) light, which is

highly efficient in inhibiting the growth of MRSA (Shah et al.

2008). This potent oxidizing power of TiO2 NPs typically

results in case of bacteria and other organic substances (Cho

et al. 2005; Fujishima et al. 2000; Shiraishi and Hirai 2008).

The small nanometer-scale TiO2 and ZnO nanoparticles

impose several effects that govern its antibacterial action.

Thus, the present study was designed to evaluate the anti-

bacterial activity of ZnO and TiO2 NPs against biofilm-pro-

ducing MRSA isolates.

Materials and methods

The present study was conducted in the Department of

Biotechnology, Karunya University, Coimbatore, India,

from December 2010 to May 2011.

ZnO and TiO2 NPs

Commercially synthesized ZnO and TiO2 NPs were pur-

chased from Sigma-Aldrich, St. Louis, MO. The reported

‘‘as manufactured’’ sizes were: ZnO NPs \100 nm and

TiO2 NPs\50 nm. The subsequent dilutions were made in

autoclaved double-distilled water.

Preparation of ZnO NPs and TiO2 NPs suspension

(Ansari et al. 2009)

One hundred milligrams of ZnO NPs and TiO2 NPs was

added to 10 ml of sterile MQ water and shaken vigorously.

The suspending solution was treated by ultrasound (100 w,

40 kHz) for 30 min, autoclaved at 121 �C for 20 min and

then cooled down to room temperature. The reason for the

use of sonication was to break down the agglomerates and

aggregation of nanoparticles and make their dispersions.

Bacterial isolates, medium and cultivation

The bacterial isolates from the clinical specimens were

isolated and characterized as MRSA and were used as test

organisms to evaluate the antimicrobial effects of ZnO and

TiO2 NPs. All the isolates were cultured aerobically at

37 �C on Mueller–Hinton Agar (MHA) plates, Hi-Media

(Mumbai, India).

Antibiotic susceptibility testing

The antibiotic susceptibility pattern was determined by

modified Kirby Bauer disc diffusion method against the

following antibiotics (drug concentration in lg): amoxyclav

(30), ampicillin (10), ampicillin/sulfbactam (10/10), cefoxitin

(30), co-trimoxazole (25), clindamycin (2), chloramphenicol

(30), ciprofloxacin (30), fusidic acid (30), gentamicin (10),

levofloxacin (10), linezolid (30), minocycline (30), mupiro-

cin (5), ofloxacin (5), rifampicin (5), teicoplanin (30), tetra-

cycline (30) and vancomycin (30). The Mueller–Hinton agar

(MHA) plate supplemented with 2 % NaCl was swabbed

with MRSA culture with turbidity matching 0.5 McFarland

standard, by a sterile cotton swab and the antibiotics

discs were laid on the surface (CLSI 2012).

Detection of biofilm production

Overnight grown bacterial culture in trypticase soya broth

(TSB) supplemented with 1 % glucose was diluted 1:100

and 200 ll of the bacterial culture was inoculated in

96-well flat bottom polystyrene microtitre plates (Tarsons,

India) (Christensen et al. 1985). Incubation was carried out

at 35 �C for 24 h. Cultures were then aspirated and the

wells were washed three times with phosphate-buffered

saline, pH 7.2. The plates were then air dried overnight and

stained with 0.1 % crystal violet. The optical density of the

wells was measured at 570 nm using micro-ELISA auto

reader. An optical density of \0.120 for nonbiofilm pro-

ducer, 0.120–0.240 for moderate biofilm producer, and

[0.240 was chosen to distinguish strong biofilm producers.

Sterile TSB was used as a negative control (blank). To

compensate for background absorbance, the OD reading

value of blank was deducted from the test values. Intensity

of biofilm was classified as given by Mathur et al. (2006).

Determination of antimicrobial activity

by well-diffusion method

The ZnO and TiO2 NPs were tested for antimicrobial

activity by well-diffusion method against strong and weak

biofilm-producing MRSA. The pure cultures of MRSA

were subcultured onto sterile Luria–Bertani broth and

incubated at 37 �C for 16–18 h. After 16–18 h, the optical

density of the above inoculated culture was checked to be

around 0.1 at 600 nm to obtain 1 9 108 CFU/ml. Wells of

6-mm diameter were made on Mueller–Hinton agar plates

using gel puncture. Each strain was swabbed uniformly
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onto the individual plates using sterile cotton swabs. Using

a micropipette, 100, 200 and 500 lg/ml of ZnO and TiO2

nanoparticles solution was poured onto each of three wells

on all plates. After incubation at 35 �C for 18 h, the dif-

ferent levels of zone of inhibition were measured.

Results

Antibiotic susceptibility testing

All the isolates subjected to the study exhibited varying

resistance patterns against 19 commonly used antibiotics.

Vancomycin was found to be the most effective drug overall

against MRSA as none of the tested isolates exhibited

resistance against it. However, cefoxitin, ampicillin, genta-

micin and co-trimoxazole developed 100 % resistance ren-

dering them incapable to act as effective drugs. The

percentage of resistance to antibiotics such as chloram-

phenicol, ciprofloxacin, ofloxacin, amoxyclav, linezolid,

tetracycline, teicoplanin, clindamycin, rifampicin, fusidic

acid, mupirocin, amoxycillin/sulfbactam, levofloxacin and

minocycline was found to be in the order of 95, 90, 83, 80, 76,

70, 67, 60, 57, 57, 50, 44, 43 and 36 %, respectively (Fig. 1).

Detection of biofilm production

All the MRSA isolates were subjected to the standard TCP

assay and 22 tested isolates displayed biofilm positive

phenotype in TSB medium, after incubation for 18 and

24 h, respectively. Optical density (OD) of stained adher-

ent bacteria was determined with a micro-ELISA auto

reader (model 680, Bio-Rad) at wavelength of 570 nm

(Table 1).

Antibiotic-resistant patterns of biofilm

and nonbiofilm-producing MRSA

Antibiotic-resistant patterns of biofilm and nonbiofilm-

producing MRSA isolates are illustrated in Fig. 2. All the

biofilm-producing isolates showed 100 % resistance to

cefoxitin followed by tetracycline, chloramphenicol, cip-

rofloxacin, co-trimoxazole, amoxyclav, gentamicin and

ampicillin. Both biofilm producer and nonbiofilm producer

exhibited 100 % resistance to cefoxitin followed by gen-

tamicin, ampicillin and co-trimoxazole. However, resis-

tance to other antibiotics such as linezolid (54 vs. 47 %),

teicoplanin (73 vs. 47 %), minocycline (64 vs. 57 %),

mupirocin (73 vs. 63 %), ofloxacin (64 vs. 57 %), clinda-

mycin (64 vs. 42 %), fusidic acid (81 vs. 42 %), amoxy-

cillin/sulfbactam (45 vs. 36 %), levofloxacin (81 vs. 57 %),

and rifampicin (45 vs. 42 %) was comparatively higher

among biofilm producers than among nonbiofilm produc-

ers. Resistance among biofilm producers to ciprofloxacin

was also higher (100 vs. 47 %) when compared with

nonbiofilm producers.

Antimicrobial activity of ZnO and TiO2 NPs against

MRSA

The antimicrobial activity of ZnO and TiO2 NPs was

investigated against biofilm-producing MRSA using well-

diffusion method. The mean of four replicates of the

diameter of inhibition zones (in millimeters) around each

well with ZnO and TiO2 NPs solution is represented in

Table 2. It was found that at all concentrations, ZnO NPs

were able to inhibit bacterial growth and a maximum zone

of inhibition of 16 and 17 mm at 500 lg/ml and a

Fig. 1 Antimicrobial

susceptibility pattern of

methicillin-resistant S. aureus

(A ampicillin, AC amoxyclav, A/

S ampicillin/sulfbactam, COT

co-trimoxazole, CD

clindamycin, CL

chloramphenicol, CIP

ciprofloxacin, FC fusidic acid,

G gentamicin, LE levofloxacin,

LZ linezolid, MIN minocycline,

MU mupirocin, OF ofloxacin,

RIF rifampicin, TEI teicoplanin,

TET tetracycline,

V vancomycin, CX cefoxitin)

Table 1 Screening for biofilm production by MRSA using tissue

culture plate method

Organism OD values

([0.240)

??? (%)

(0.120–0.240)

?? (%)

(\0.120)

- (%)

MRSA

(n = 30)

22 (73.33) 4 (13.33) 4 (33.33)

(???) strongly, (??) moderate, (-) weak
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minimum zone of inhibition of 12 and 14 mm at 100 lg/ml

were observed against strong and weak biofilm-producing

MRSA isolates, respectively. Similarly, TiO2 NPs were

able to inhibit bacterial growth and a maximum zone of

inhibition of 14 mm at 500 lg/ml and a minimum zone of

inhibition of 11 and 12 mm at 100 lg/ml were observed

against strong and weak biofilm-producing MRSA isolates,

respectively.

Discussion

MRSA has the ability to form biofilms, which contribute to

antibiotic resistance and other related infections (Paintsil

2007; Kwon et al. 2008). In this study, 73.3 % of MRSA

isolates were found to produce biofilms. This is compara-

tively higher than 14.7, 52.7 and 56.6 % as reported by

Mathur et al. (2006); Gundogan et al. (2011) and Zmantar

et al. (2009). The present study employed the TCP method

for the detection of biofilm in MRSA. It is the easiest and

cheapest technique available for routine laboratory use

(Ruzicka et al. 2010). We compared the differences in

antibiotic-resistant patterns between the biofilm and non-

biofilm-producing MRSA isolates. Cha et al. (2011) sug-

gested that biofilms are more resistant to killing than

planktonic cells are which supports the findings of the

present study. Cha et al. (2011) demonstrated that dapto-

mycin and tigecycline activities in biofilms were better

than those of the other conventional antibiotics (vanco-

mycin, clindamycin, gentamicin, and linezolid). But, in the

present study, vancomycin, ampicillin/sulfbactam, rifam-

picin and linezolid antibiotics showed better activities

against biofilms. Shrestha et al. (2009) found that MRSA

isolates were susceptible to vancomycin, teicoplanin and

linezolid, whereas in this study, we observed complete

susceptibility against vancomycin only and resistance to

teicoplanin and linezolid.

Zinc oxide has a very good potential to move into the

clinical field (Shopsin et al. 1999). The antibacterial

activity of ZnO NPs against many isolates has been well

documented like in Staphylococcus spp. (Huang et al.

2008), K. pneumoniae (Lee, 2009), and Pseudomonas spp.

(Jiang et al. 2009), Escherichia coli (Zhang et al. 2009).

Rizwan et al. (2010) have stated that when the concen-

tration of ZnO nanoparticles is increased it resulted in the

augmenting of zone size. Whereas in this study, there was

no significant difference in the zone of inhibition at 100

and 200 lg/ml, but there was an increase in size at

500 lg/ml. Ansari et al. (2009) reported that employing

increased concentration of ZnO NPs, did not show any

steady increase in the zone size. Previous researchers have

proposed that release of H2O2 might be one of the pos-

sible mechanisms for antibacterial activity of ZnO-NPs

(Yamamoto 2001; Yamamoto et al. 2004). The toxicity of

ZnO and of other metal oxides towards human beings is

observed at higher concentrations, but low concentrations

of ZnO are non-toxic towards human cells. The occur-

rence of insoluble zinc in the well-diffusion agar method

clearly indicates the antibacterial activity of ZnO NPs. On

the other hand, ZnO NPs are much more effective in

Fig. 2 Antibiotic-resistant

patterns of biofilm and

nonbiofilm-producing,

methicillin-resistant S. aureus

(A ampicillin, AC amoxyclav, A/

S ampicillin/sulfbactam, COT

co-trimoxazole, CD

clindamycin, CL

chloramphenicol, CIP

ciprofloxacin, FC fusidic acid,

G gentamicin, LE levofloxacin,

LZ linezolid, MIN minocycline,

MU mupirocin, OF ofloxacin,

RIF rifampicin, TEI teicoplanin,

TET tetracycline, CX cefoxitin)

Table 2 Zone of inhibition of ZnO and TiO2 NPs against biofilm-producing MRSA

Study no. MRSA

isolates

Biofilm

forming capacity

Zone of diameter in mm (mean of four replicates)

ZnO NPs TiO2 NPs

100 (lg/ml) 200 (lg/ml) 500 (lg/ml) 100 (lg/ml) 200 (lg/ml) 500 (lg/ml)

1 SA 2 Strong 12 14.5 16 11 13.5 14

2 SA 6 Weak 14 16 17 12 13 14
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controlling the growth of various microorganisms (Sawai

2003).

Gelover et al. (2006) reported that TiO2 NPs are the

mostly studied for their photocatalytic antimicrobial

activity among various NPs. Roy et al. (2010) in their

study suggested that TiO2 NPs failed to exhibit antibac-

terial activity, but upon combination with antibiotics they

were able to inhibit the growth of microorganisms. But

here, TiO2 NPs without any kind of combination inhibited

the growth of MRSA isolates with a maximum zone of

14 mm at 500 lg/ml and a minimum zone of 11 and

12 mm at 100 lg/ml against strong and weak MRSA

isolates. Zhang et al. (2009) have suggested the possible

mechanisms involving the interaction of nanomaterials

with the biological molecules. The author documented

that microorganisms carry a negative charge while metal

oxides carry a positive charge which creates an ‘‘elec-

tromagnetic’’ attraction between the microbe and treated

surface concluding that once the contact is made, the

microbe is oxidized and dead instantly (Zhang and Chen

2009).

Thus, the antimicrobial activity of the nanoparticles

showed that the ZnO and TiO2 NPs have great potential to

be used as antimicrobial agents against microorganisms.

Resistance to antimicrobial agents by pathogenic bacteria

has emerged in recent years and it is a major health

problem. This study would serve as a useful guidance for

the physicians and also other healthcare-associated workers

for the choice of antibiotics and nanoparticles in the

treatment of MRSA biofilm infections. But ZnO NPs and

TiO2 NPs inhibited the growth with a maximum zone of

inhibition of 16 mm (strong), 17 mm (weak) and 14 mm

(for both strong and weak) at 500 lg/ml, respectively,

against biofilm producing MRSA isolates. The study con-

firmed that strong MRSA biofilm had increased resistance

to most of the antibiotics. Therefore, there is a need for a

better understanding of the properties of MRSA biofilm-

mediated diseases. For instance, the development of

metallic nanoparticles covering the surfaces of ambulatory

and other medical devices would provide an alternative

means to decrease the microorganism colonization and

device-associated infection, including ventilator-associated

pneumonia, central venous catheter infections and catheter-

associated urinary tract infections.
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