20 research outputs found

    Indentation in single-crystal 6H silicon carbide: Experimental investigations and finite element analysis

    Get PDF
    Silicon carbide (SiC) is a promising material ideally suited for small-scaled devices deployed in harsh environments. SiC is brittle in bulk form, however, at small component length-scales plasticity is observed. A good understanding of deformation behaviour is, therefore, crucial for reliable small-scale component design and fabrication. Here, experimental and numerical analysis of the deformation behaviour of single-crystal 6H-SiC in nanoindentation is presented. Nanoindentation studies are carried out in two orientations of the single-crystal using a Berkovich indenter. Next, a crystal-plasticity theory was implemented in finiteelement (FE) modelling framework to predict the deformation of the hexagonal single-crystal. The validity of the present FE modelling methodology was corroborated through comparison between FE simulations and experimental data in terms of indent profile and loaddisplacement curves. Our results showed that classical crystal plasticity theory can be reliably applied in predicting plastic deformation of ceramic at small scales

    Modelling strain localization in Ti-6Al-4V at high loading rate: a phenomenological approach

    Get PDF
    A phenomenological approach based on a combination of a damage mechanism and a crystal plasticity model is proposed to model a process of stain localization in Ti-6AI-4V at a high strain rate of 103 s-1. The proposed model is first calibrated employing a 3D representative volume element model. The calibrated parameters are then employed to investigate the process of onset of strain localization in the studied material. A suitable mesh size is chosen for the proposed model by implementing a mesh-sensitivity study. The influence of boundary conditions on the initiation of the strain localization is also studied. A variation of crystallographic orientation in the studied material after the deformation process is characterized, based on results for different boundary conditions. The study reveals that the boundary conditions significantly influence the formation of shear bands as well as the variation of crystallographic orientation in the studied material. Results also indicate that the onset of strain localization can affect considerably the material’s behaviour

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Shear band widening mechanism in Ti–6Al–4V under high strain rate deformation

    No full text
    In this study, mechanical properties and microstructural investigation of Ti64 at high strain rate are studied using a split-Hopkinson pressure bar method under compression for temperatures up to 800 °C. Flow softening in the mechanical response of material to such loading conditions hints at instability in compression, which increases with an increase in temperature. Microstructural characterization of the deformed material is characterized using the electron-backscattered diffraction technique. It reveals the presence of instabilities in Ti64 in the form of a fine network of shear bands. The shear band width grows with an increase in temperature along with the area fraction of shear band in the material, displaying its improved capacity to contain microstructural instabilities at higher temperature. After a detailed microstructural investigation, a mechanism for shear band widening is proposed. Based on this mechanism, a path generating nuclei within shear bands is discussed
    corecore