622 research outputs found

    The volume in focus: hardwareassisted focus and context effects for volume visualization

    Get PDF
    In many volume visualization applications there is some region of specific interest where we wish to see fine detail - yet we do not want to lose an impression of the overall picture. In this research we apply the notion of focus and context to texture-based volume rendering. A framework has been developed that enables users to achieve fast volumetric distortion and other effects of practical use. The framework has been implemented through direct programming of the graphics processor and integrated into a volume rendering system. Our driving application is the effective visualization of aneurysms, an important issue in neurosurgery. We have developed and evaluated an easy-to-use system that allows a neurosurgicalteam to explore the nature of cerebral aneurysms, visualizing the aneurysm itself in fine detail while still retaining a view of the surrounding vasculature

    Impacts of Mangrove Density on Surface Sediment Accretion, Belowground Biomass and Biogeochemistry in Puttalam Lagoon, Sri Lanka

    Get PDF
    Understanding the effects of seedling density on sediment accretion, biogeochemistry and 3 belowground biomass in mangrove systems can help explain ecological functioning and inform 4 appropriate planting densities during restoration or climate change mitigation programs. The 5 objectives of this study were to examine: 1) impacts of mangrove seedling density on surface 6 sediment accretion, texture, belowground biomass and biogeochemistry, and 2) origins of the 7 carbon (C) supplied to the mangroves in Palakuda, Puttalam Lagoon, Sri Lanka. Rhizophora 8 mucronata propagules were planted at densities of 6.96, 3.26, 1.93 and 0.95 seedlings m-2 along 9 with an unplanted control (0 seedlings m-2). The highest seedling density generally had higher 10 sediment accretion rates, finer sediments, higher belowground biomass, greatest number of fine 11 roots and highest concentrations of C and N (and the lowest C/N ratio). Sediment accretion rates,12 belowground biomass (over 1370 days), and C and N concentrations differed significantly 13 between seedling densities. Fine roots were significantly greater compared to medium and coarse 14 roots across all plantation densities. Sulphur and carbon stable isotopes did not vary significantly 15 between different density treatments. Isotope signatures suggest surface sediment C (to a depth 16 of 1 cm) is not derived predominantly from the trees, but from seagrass adjacent to the site

    Fluctuations of an evaporating black hole from back reaction of its Hawking radiation: Questioning a premise in earlier work

    Full text link
    This paper delineates the first steps in a systematic quantitative study of the spacetime fluctuations induced by quantum fields in an evaporating black hole. We explain how the stochastic gravity formalism can be a useful tool for that purpose within a low-energy effective field theory approach to quantum gravity. As an explicit example we apply it to the study of the spherically-symmetric sector of metric perturbations around an evaporating black hole background geometry. For macroscopic black holes we find that those fluctuations grow and eventually become important when considering sufficiently long periods of time (of the order of the evaporation time), but well before the Planckian regime is reached. In addition, the assumption of a simple correlation between the fluctuations of the energy flux crossing the horizon and far from it, which was made in earlier work on spherically-symmetric induced fluctuations, is carefully analyzed and found to be invalid. Our analysis suggests the existence of an infinite amplitude for the fluctuations of the horizon as a three-dimensional hypersurface. We emphasize the need for understanding and designing operational ways of probing quantum metric fluctuations near the horizon and extracting physically meaningful information.Comment: 10 pages, REVTeX; minor changes, a few references added and a brief discussion of their relevance included. To appear in the proceedings of the 10th Peyresq meeting. Dedicated to Rafael Sorkin on the occasion of his 60th birthda

    Continuum theory of vacancy-mediated diffusion

    Full text link
    We present and solve a continuum theory of vacancy-mediated diffusion (as evidenced, for example, in the vacancy driven motion of tracers in crystals). Results are obtained for all spatial dimensions, and reveal the strongly non-gaussian nature of the tracer fluctuations. In integer dimensions, our results are in complete agreement with those from previous exact lattice calculations. We also extend our model to describe the vacancy-driven fluctuations of a slaved flux line.Comment: 25 Latex pages, subm. to Physical Review

    Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comment

    Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q^2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure

    High time resolution and polarization properties of ASKAP-localized fast radio bursts

    Get PDF
    Combining high time and frequency resolution full-polarization spectra of fast radio bursts (FRBs) with knowledge of their host galaxy properties provides an opportunity to study both the emission mechanism generating them and the impact of their propagation through their local environment, host galaxy, and the intergalactic medium. The Australian Square Kilometre Array Pathfinder (ASKAP) telescope has provided the first ensemble of bursts with this information. In this paper, we present the high time and spectral resolution, full polarization observations of five localized FRBs to complement the results published for the previously studied ASKAP FRB 181112. We find that every FRB is highly polarized, with polarization fractions ranging from 80 to 100 per cent, and that they are generally dominated by linear polarization. While some FRBs in our sample exhibit properties associated with an emerging archetype (i.e. repeating or apparently non-repeating), others exhibit characteristic features of both, implying the existence of a continuum of FRB properties. When examined at high time resolution, we find that all FRBs in our sample have evidence for multiple subcomponents and for scattering at a level greater than expected from the Milky Way. We find no correlation between the diverse range of FRB properties (e.g. scattering time, intrinsic width, and rotation measure) and any global property of their host galaxy. The most heavily scattered bursts reside in the outskirts of their host galaxies, suggesting that the source-local environment rather than the host interstellar medium is likely the dominant origin of the scattering in our sample

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
    • …
    corecore