57 research outputs found

    Effects of superimposed hydrostatic pressure on fracture in round bars under tension

    Get PDF
    AbstractThe effect of superimposed hydrostatic pressure on fracture in round bars under tension is studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that while the superimposed hydrostatic pressure has no noticeable effect on necking, it increases the fracture strain due to the fact that a superimposed pressure delays or completely eliminates the nucleation, growth and coalescence of microvoids or microcracks. The experimentally observed transition of the fracture surface, from the cup-cone mode under atmospheric pressure to a slant structure under high pressure, is numerically reproduced. It is numerically proved that the superimposed hydrostatic pressure has no effect on necking for a damage-free round bar under tension

    Evolution of deformation and recrystallization textures in high-purity Ni and the Ni-5 at. pct W alloy

    Get PDF
    An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling (∼95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented ({001} {100}) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube ({013} {100}). Low-temperature annealing produces a weak cube texture along with the {013} {100} component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the {013} {100} component. The difference in the relative strengths of the cube, and the {013} {100} components in the two materials is evident from the beginning of recrystallization in which more {013} {100} -oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the {013} {100} grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    On the Effect of Plastic Spin on Large Strain Elastic-Plastic Torsion of Solid Bars

    Get PDF
    The plastic spin has recently been identified as a key concept in the macroscopic description of large deformation plasticity for the treatment of anisotropic hardening. A class of combined isotropic-kinematic hardening models is formulated here, which includes two alternative constitutive equations for the plastic spin. The various sets of constitutive equations are used to analyze the large strain torsion of solid circular bars with either axially fixed ends or free ends. These analyses are carried out numerically using special purpose finite elements and, when feasible for particular cases, by means of a semianalytical method. It is shown that the plastic spin, and its different constitutive descriptions, have a significant influence on the predicted torque response and, in particular, on the axial Swift effects. The differences between fixed-end and free-end predictions are emphasized. It is found that the difference in predicted axial effects for the various plastic spin constitutive laws is most pronounced in fixed-end torsion, while the torque response is most sensitive in free-end torsion.

    On crystal plasticity formability analysis for magnesium alloy sheets

    Get PDF
    AbstractSheet metal formability is assessed in terms of the Forming Limit Diagram (FLD) for magnesium alloys with Hexagonal Close Packed (HCP) crystallographic structure. All simulations are based on the recently developed elastic–visco-plastic self-consistent (EVPSC) model and the classical Taylor model, in conjunction with the M–K approach. The role of crystal plasticity models and the effects of basal texture on formability of magnesium alloy AZ31B sheet are studied numerically. It is observed that formability in HCP polycrystalline materials is very sensitive to the intensity of the basal texture. The path-dependency of formability is examined based on different non-proportional loading histories, which are combinations of two linear strain paths. It is found that while the FLD in strain space is very sensitive to strain path changes, the Forming Limit Stress Diagram (FLSD) in stress space is much less path-dependent. It is suggested that the FLSD is much more favourable than the FLD in representing forming limits in the numerical simulation of sheet metal forming processes. The numerical results are found to be in good qualitative agreement with experimental observations

    Large Strain Torsion of Axially-Constrained Solid Rubber Bars

    Get PDF
    Large strain fixed-end torsion of circular solid rubber bars is studied semi-analytically. The analyses are based on various non-Gaussian network models for rubber elasticity, some of which were proposed very recently. Results are presented in terms of predicted torque vs. twist curves and axial force vs. twist curves. In some cases, the predicted stress distributions are also given. The sensitivity of the second-order axial force to the employed models is considered. The predicted results are compared with experimental results found in the literature.
    corecore