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L A R G E  S T R A I N  T O R S I O N  OF A X I A L L Y - C O N S T R A I N E D  
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A B S T R A C T :  Large strain fixed-end torsion of circular solid rubber bars is studied 
semi-analytically. The analyses are based on various non-Gaussian network models for 
rubber elasticity, some of which were proposed very recently. Results are presented 
in terms of predicted torque vs. twist curves and axial force vs. twist curves. In 
some cases, the predicted stress distributions are also given. The sensitivity of the 
second-order axial force to the employed models is considered. The predicted results 
are compared with experimental results found in the literature. 

K E Y  W O R D S :  rubber, network model, large strain torsion 

I. I N T R O D U C T I O N  

The analysis of simple shear deformations has become a popular benchmark for testing 

the appropriateness of large strain constitutive models. In principle, simple shear can be 

produced approximately by torsion of thin-walled tubes with ends prevented from displac- 

ing in the axial direction. In fact, many experimental procedures based on torsion have 

used thin-walled specimens for which the state of the deformation has been assumed to be 

completely uniform [1]. Unfortunately, in order to avoid buckling in a finite deformation tor- 

sion experiment on a hollow tube, it is necessary that the thickness of the tube be at least 

10-15% of the mean radius [2]. These tubes cannot really be considered to be thin and the 

deformation is not really homogeneous [3]. In addition to this, a thin hollow tube is much 

more difficult to manufacture and grip than a solid bar. Therefore in view of the various 

experimental problems, thin-wailed tubes seem to be of less practical importance at large 

strains. 

The torsion test of a solid cylindrical bar seems to be ideally suited for the experimental 

determination of material parameters in the range of large strains. The major advantage of 

this test over tensile tests is that  deformations during torsion remain homogeneous in the 

axial direction until fracture. A second point of interest in large strain torsion relates to 

at tempts to incorporate deformation-induced anisotropy into large strain constitutive mod- 

els. Poynting [4] studied elastic torsion of solid wires with fixed ends (with axial constraint) 

and free ends (without axial constraint). From his experiments, Poynting pointed out that  

axial elongation occurs under free-end torsion, while axial compressive forces are created 

under fixed-end torsion. The prediction of similar second-order axial effects in large-strain 
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elastoplastic torsion of metals depends strongly on the constitutive model - - in  particular the 
description of anisotropic hardening[ 5,6,7]. Thus, the torsion test seems to provide a simple 

yet effective means for assessing the adequacy of the constitutive models. 

The development of axial force has also been found in large strain fixed-end torsion 
of rubbers[ s] . In the past, the analyses of large strain torsion of rubber  seem to have 
been based exclusively on phenomenologicai constitutive models for rubber elasticity [9,1~ 
Phenomenological models have the distinct advantage of being relatively easy to implement 
in numerical analyses of large strain problems. However, they bear no relationship to the 
actual deformation mechanisms on the macromolecular level. For this purpose, non-Gaussian 
network models for rubber elasticity are required. 

The development of macromolecular network models for rubber  elasticity dates back 
to as early as the 1940s. These network theories are based upon the concept of a net- 
work of chains of randomly oriented rigid links that  are connected at junction points which 
in rubber-like materials are provided by the chemical cross-links between macromolecules. 
Furthermore, these network theories use a so-called a/fine deformation scheme and assume 
that  intermolecular interactions are negligible in comparison to intramolecular effects. The 
overall properties of the network are then obtainable by simply summing the contributions 
of the individual chains. Furthermore, the exact non-Gaussian t reatment  of a single chain 
is available (developed originally by Kuhn and Grun [11], James and Guth[12]). However, 

an exact t reatment  of the transition from an individual chain to network behaviour is very 
difficult owing to its mathematical  complexity. In principle, this transition (through an av- 
eraging process) needs the orientations of the individual chains of the network, which was 
not available for arbitrary 3-D deformations until very recentlylla]. 

Various simplified averaging procedures for obtaining the network response have been 
proposed [13]. Among these simplified models, the so-called three-chain model assumes that  
a network containing n chains per unit volume is equivalent to three independent sets of 
n/3 single chains in three orthogonal directions. Thus, the actual spatial distribution of 
chains is sampled in three orthogonal orientations. Very recently, Arruda and Boyce [14'15] 

proposed a so-called eight-chain model to sample eight spatial chain orientations. Obviously, 
these models are approximate representations of the actual spatial distribution of molecular 
chains. They  can be regarded to sample a set of particular directions among all possible 
orientations. More precisely, the three-chain model would overestimate the contribution 
of the chain collection oriented along the direction of major, principal extension, while the 
eight-chain model would underestimate the stiffness of the network [16]. 

The full network formulation by Wu and Van der Giessen [13,17'1s] accounts accurately 
for the actual spatial orientation distribution of molecular chains. Treloar and Riding [19] 
had already developed a rubber elasticity theory based on such a full network description, 
but  their considerations were limited to deformations with biaxial extension along fixed axes 
under plane stress conditions. Our model extends their theory to a general formulation valid 
for 3-D deformation processes. Furthermore, our model allows us to avoid calculating prin- 
cipal stretches and principal directions of deformation [ls]. The  modelling centres around 
a general t reatment  of the orientation distribution of molecular chains and their evolution 
as deformation progresses. This description utilizes the idea of Chain Orientation Distri- 
bution Function (CODF), which is governed by balance equations that  express physically 
well-understood conservation features. Assuming the network to deform affinely with the 
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deformation of the continuum it is embedded in, a closed-form solutions have been derived 

for this CODF,  which thus contain the complete information of the orientation distribution 

of molecular chains at any stage of the deformation. This solution is then used to develop 
the rubber  elasticity model by averaging out the contribution to the network response of 

individual chains over all chain orientations. The full network model has been found to be 

able to pick up many  aspects of the mechanical behaviour of rubbers at various different 
large deformations [13,1s,2~ . 

However, the application of the rubber  network models has so far been restricted to 

uniform deformations. Obviously, the torsion test  on a solid circular bar  involves stress 
and deformation gradients along the radius of the bar,  as well as non-proport ional  stressing 

histories and rotations of the principal axes of strain for each element of the cross-section. 

Therefore, the analysis of large strain solid bar torsion is considerably more involved. For- 
tunately, Neale and Shrivastava [51 have found tha t  if the behaviour is axisymmetric,  axially 

homogeneous and incompressible, semi-analytical solutions can be obtained for solid bars 

subjected to fixed-end torsion. In this paper,  we s tudy large strain fixed-end torsion of 

rubbers using tha t  method [5]. Results are presented in terms of predicted torque vs. twist 

Curves and axial force vs. twist curves. In some cases, the predicted stress distributions are 
also given. The predicted results are compared with experimental  results for a vulcanized 
rubber  given by Rivlin and Saunders [sl. 

Tensors will be denoted by bold-face letters. The tensor product  is denoted by | and 

the following operat ion for second-order tensor applies (a  = a~jei | e j ,  b = b~jei @ ej ,  ei 

being a Cartesian basis): ab = aikbkje~ | ej. Superscripts T and - 1 denote the transverse 
and inverse of a second-order tensors, respectively. The trace is denoted by tr. 

II. N E T W O R K  M O D E L S  F O R  R U B B E R  E L A S T I C I T Y  

1. Fhll  N e t w o r k  M o d e l  
Wu and Van der Giessen [13'1s] introduced a so-called molecular Chain Orientation 

Distr ibution Function (CODF),  denoted by C(O, ~; t ) ,  such that  the relative density of 

molecular chains, at some instant t, whose end-to-end vector r has an orientation in the 
range between (O, ~) and (O + dO, �9 + d~)  is given by C(O, ~; t )  sin O d O d ~ .  Note tha t  

sin O d O d ~  is the area on a unit sphere spanned by the interval (dO, d ~ )  and tha t  t is just  
a time-like monotonic parameter .  With  n denoting the number of chains per unit volume, 

the actual  number  of chains between (O, ~) and (O + d O, �9 + d ~) then is 

dn = nC( O, ~; t)sin O d O d ~  (1) 

For a virgin, uns t ra ined  material  the orientation of network chains can usually be consid- 

e red  to be distr ibuted in a random fashion; then C will be independent of O and 4~, and 
the mater ial ' s  response is instantaneously isotropic. When  the material  is deformed, all 

chains are stretched and, at the same time, rotated. Hence, the CODF will develop into a 

nonuniform distribution tha t  can be quite severe as has been demonstra ted  in Wu and Van 
der Giessen [13]. Thus, texture development in the sense of molecular chain distributions is 

described in this model in terms of this CODF. 

Assuming the network to deform affinely with some three-dimensional deformation 
process represented by the deformation gradient tensor F of the continuum it is embedded 

in, each chain's end-to-end vector to  in the initial s ta te  is taken to be strained and rota ted 
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to the vector r in the current s tate in an affine manner,  i.e. r = Fro. Since we assume 
the network to be incompressible, the deformation gradient tensor satisfies det F = I .  I t  can 
be shown [laJs] tha t  in an arbi t rary  s tate  of deformaiton, the CODF for an initially random 

network can be expressed as follows 

C = CoA3(O, ~ ; F )  (2) 

where Co = 1/47r is the initial uniform distribution, and where A~ is the chain stretch which 

can be obtained from F by 

Ac 2 = m(FFW)-lm (3) 

Here, m is the unit vector m = r/r  -- miei(r = Ilrll) along the end-to-end vector r ,  in the 
current deformed state with components  

m I ---- sin O cos ~ m 2  = sin O sin 4~ m3 = cos O (4) 

Here, we have subst i tuted the deformation gradient tensor as the time-like pa ramete r  t 

in the previous expressions for the C O D F .  This is possible since, as a consequence of the 
affine deformation assumption, the distortion of the network is independent of the rate  of 

deformation, so tha t  t only needs to be some monotonic parameter .  Identifying t with F 

will turn out to be convenient for further development.  For a detailed derivation of (2) we 
refer to Wu and Van der Giessen [13,1s]. 

Consider a single chain between two junction points, with its end-to-end vector r in 
the current s tate  being specified by angular coordinates O and 4~ with respect to some 

fixed frame of reference defined by the set of or thonormal  base vectors el (see Fig. l) .  We 
further assume tha t  this single chain has a given stretch Ac i n  current state. If  the chain 

contains N links of length l, the length of the unstrained free chain r0 is given by the 
root-mean-square,  value x/-Nl. By considering the statisticM distribution of possible link 
angles at a given stretch A~, Kuhn and Grun[ 111 were the first to derive the well-known non- 

Gaussian relationship between force fc and stretch A~ for the stretched chain, which could 

be t ransformed into a relationship between the Cauchy stress a~ acted on the cont inuum in 
which the chain is embedded and the stretch in the form [ls] 

where C R is known as the rubbery  modulus 

and • is the Langevin function defined by 

s = cothf~ - 1/~. 
Wu and Van der Giessen [ls] further intro- 

duced a so-called micro-stress tensor a c  by 

=  o(m | m )  - v z  (6) 

which can be interpreted as the contribution 
of the single chain to the stress of the network. 

The hydrostat ic  pressure p is included because 
of incompressibility. The hydrostatic pressure 

e 3  

Y e2  
v 

Fig.1 A single chain in strained state; 

definition of geometric quantities 



140 ACTA MECHANICA SINICA 1994 

p is included because o f  incompressibility. The overall or ngacrostress tensor ~r of the network 
is then obtainable by simply averaging the micro-stress tensor ~rc of the individual chains ,  
i.e. 

1 /  
er --- - ~r~dn (7) 

n 

With dn being given by (1) and the CODF by (2), we finally obtain from (7) with the  help 
of (5) and (6) for the Cartesian stress components, er = crijei | e j  

• ' 
4~rCR 4 -1 = )~c~. mimj sin tgdtgd~ - pbij o'ij (8) 

with )~ determined from (3) as a function of the deformation gradient tensor F and the ori- 
entation ((9, r  The  hydrostatic pressure p is left unspecified by the constitutive equations 
and is to be determined from the boundary conditions. 

2. S impl i f i ed  M o d e l s  

Now consider two simplified network models tha t  have been proposed in the literature, 
namely the three-chain model and the eight-chain model. The three-chain model assumes 
that  a network containing n chains per unit volume is equivalent to three independent sets of 
n/3 chains per unit volume parallel to the Eulerian principal axes eft as shown in Fig.2(a). 
The principal values of the stress tensor according to this model are given in terms of the 
principal stretches Ai bY [21] 

3--oh CR_._ ~ / r ~ . ~ - I  ( ~i (no sum) (9) 

Once these principal stresses are evaluated, the Cauchy stress tensor r 3-oh, whose principal 
axes concide with the Eulerian triad e E, is constructed by 

3 
a 3-r = V "  a.3-Ch(e.E 

i----1 

The eight-chain model for rubber  elasticity was proposed by Arruda and Boyce [14,151 

and considers a set of eight chains connecting the central junction point and each of eight 
corners of the unit cube as shown in Fig.2(b). The stress tensor according to the eight-chain 
model, or s-ca, is found as 

aS_-ch - CRv/-'Ns A~ ~ F F T - p I  (10) 

with 

/ 1 T 
Ac ---- 1 / : ~ t r ( F F  ) 

y o  
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A 

(a) (b) 

Fig.2 Schematic representation of the three-chain model (a) and the eight-chain model (b) 

Comparing these three-chain and eight-chain samplings with the actual  three-dimen- 
sional initial r andom distribution of molecular chains, the three-chain model would overes- 

t imate  the actual  stiffness of the network, while the eight-chain model would probably  give 

a lower bound. Indeed, the stress response predicted by our full network model (8) is, for 
the same values of N and n, always in between tha t  predicted by the three-chain model 
and eight-chain model, respectively [13,1s]. However, the integrations involved in (8) require 

a rather  t ime-consuming numerical procedure. An approximation of the full integration has 
been found [17] in the form of combination of the three-chain and eight-chain models through 

er = (1 - p ) o  "3-ch -4- p o  "8-ch (11) 

where the paramete r  p may be a constant or related to some other physical quant i ty  which 

is, for instance, related to the maximal  principal stretch Amax ---- max(A1, A2, A3) via 

p = 0.85 Amax (12) 

where the factor 0.85 was chosen to give the best correlation with full-integrations of (8). 

In this way, the eight-chain contribution in (10) becomes increasingly impor tan t  when )tma x 

approaches the limit stretch v ~ .  

I I I .  P R O B L E M  F O R M U L A T I O N  A N D  M E T H O D  O F  S O L U T I O N  

We consider a homogeneous, incompressible solid circular bar  of radius R and length L 

subjected to a twist ~ (see Fig.3). The lateral surface of the bar  is stress-free and all proper-  
ties are assumed to be axisymmetric and homogeneous along the axial direction. Although 

anisotropy will be induced during the deformation process, the behaviour remains axisym- 

metric and the bar  remains circular cylindrical. The end faces of the bar  are constrained 

to the extent tha t  they remain plane and perpendicular  to the axial direction, so tha t  we 
may assume tha t  any cross-section of the bar  remains plane. For the fixed-end condition 

considered here, the end faces of the bar  are fully constrained axially so tha t  there is no 
axial displacement, thus allowing for the development of an axial force F.  

The kinematics of the problem is readily established with the aid of a spatially fixed 

cylindrical coordinate system x i = (8, z, r)  with associated or thonormal  base vectors e l  = 

co,  'e2 -- ez,  e3 = at .  These base vectors are associated with material  e l emen t s in  their 
current, deformed state, so tha t  tensor components  with respect to t h i s  basis represent 
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physical components. The deformations are assumed such that  if the initial coordinates 
of a material point are (80, z, r),  its current coordinates are given by (8, z , r ) ,  with 8 =- 
80 + (~o/L)z. Accordingly, the components Lij of the velocity gradient tensor L = L~je~ | e j  

are such that  [0 0] 
[L~]= 0 0 0 (13) 

0 0 0 

where ~ /=  r(~b/L). Thus, each~element of the bar is in a state of simple shear in the O-z 

plane, where the shear strain 3' is directly proportional to the radial distance r. Tha t  is 

3'(r) = ~ r  (14) 

where F = ( R / L ) ~  represents the shear strain at the outer surface of the bar. 

L__~z 

Fig.3 Schematic representation of an axially-constrained 
solid circular bar under torsion 

Neale and Shrivastava [5] have found that  if the behaviour is axisymmetric, axially 
homogeneous and incompressible, semi-analytical solutions can be obtained for solid bars 
subjected to fixed-end torsion. This is possible since each material point is in this case 
simply loaded in simple shear under an additional hydrostatic pressure, where the shear 3" is 
directly proportional to the radius r,  as shown in (13) and (14). To apply this semi-analytical 
method: we require the valueS of the deviatoric stress components sij during simple shear 
as a function of the shear deformation 3", which is then readily translated into the stress 
deviator distribution sij (r). To obtain the actual stress distribution aij = sij - p6~j (where 
~ j  is Kronecker delta), the hydrostatic pressure distribution p(r )  is needed [5]. 

For the above conditions, the only equation of equilibrium which is not identically 
satisfied is the relation 

d6r r r  
? ' - -d~ - r  "~- O ' r r  - -  O'0~ : 0 

This can be writ ten in terms of p and the known sij (r) distribution as follows 

dp dsrr 1 
(15) 

Integrating the resulting equation and using the boundary condition a r t (R)  ---- 0, gives the 
hydrostatic pressure distribution 

p(r)  = srr - (s~T - soo)dr (16) 
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Combining this with the stress deviator distribution gives ai j (r ) .  The resultant torque M 
and axial force F are computed by 

# M ( F )  = 2~r r2ao~dr (17) 

and 

~o R F ( F )  = 2 r  r ~ d r  

respectively. Since aez = so~ the hydrostatic pressure has no influence'on M. 

(18) 

I V .  R E S U L T S  

The torsion problem described in Section III involves a number of nondimensional 
groups, among which are the following 

R 2M F 
1" = - ~  7" -- 7rR3CR r - 7rR2C~ (19) 

These quantities can be used to present the overall response of a specimen under fixed- 
end torsion, irrespective of the actual dimensions of the specimen. Note that  the normalized 
torque parameter  ~- in (19) differs from that  in Van der Giessen et al. [7] , for reason to become 
clear shortly. 

Figure 4 shows the predicted normalized torque responses according to various network 
models. The value of the network parameter N -- 25 was used for all three models; it was 
simply selected as representative value of N. What  this result clearly shows is tha t  relative 
to the full network model, the three-chain approximation tends to overestimate the stiffness 
at large twists, while the eight-chain model tends to underestimate this. It is clear tha t  
all models give virtually identical predictions for small shear strains up to F ,~ 1.8. I t  is 
only for large strains that  considerable differences arise. Furthermore, the approximation 
(11) for the full network response in terms of ~- is seen to be very accurate up to very large 
twists. Comparing Fig.4 with the uniform simple shear results reported by Wu and Van der 
Giessen[ 17], it is found that  the overall trends obtained for the normalized torque of the solid 
bar in fixed-end torsion seems to be similar to the shear stress response in simple shear. 

The predicted normalized axial forces are presented in Fig.5. The prime characteristic 
of the response is that  the axial force developed during twisting is compressive. All three 
network models give virtually identical predictions up to E ~ 2.3. For large values of twist, 
the three-chain model predicts very large compressive forces, which are associated with 
the stretching of the network affinely with the deformation. Initially, the principal stretch 
directions are oriented at 45 ~ relative to the ee-ez  axes, and this orientation slowly rotates 
towards the final ideal e0-e~ directions with ongoing shearing. The limit stretch of the 
network is at tained long before such final orientations are reached, thus explaining the very 
substantial axial force. When using the eight-chain model, we see that  the magnitude of the 
axial force reduces drastically. Again; the predicted axial force by the full network model 
is between that  predicted by the three-chain model and the eight-chain model respectively. 
Furthermore, the overall qualitative trends obtained for the axial force of the fixed-end solid 
bar torsion are similar to the evolution of the normal stress in simple shear, as reported 
by Wu and Van der Giessen [1T]. Again we see that  the approximation (11) for the full 



!44 ACTA MECHANICA SINICA 1994 

network response in terms of ~ is very accurate up to very large twists. In the remainder 
of this Section, all results according to the full network model have been obtained with the 
approximation (11). 

16 

- -  full ne twork  l 
t . . . . . .  a p p r o x i m a t i o n  (11) ! 

- - -  3 - c h i n  i" 
. . . . .  8-chain ! / 

/ 
/ , 

/ / / 1 / ~  

0 1 2 3 4 5 0 0 

12 

16 

12 

/ ,  

-~ 8 

Fig.4 Predicted torque for fixed-end Fig.5 
torsion according to different 
network models with N -- 25 

I 
l 
J 

- -  fttll n e t w o r k  | 
. . . . . .  a p p r o x i m a t i o n  (11) l 
- - -  3-chala I 
. . . . .  8-chaha I // 

I I I 

1 2 3 4 

Predicted axial force for fixed-end 
torsion according to different 
network models with N ---- 25 

Figure 6 shows the stress distributions, according to the full network model, across 

the bar  when (a) /" -- 0,6 and (b) P -- 4.7. I t  is found tha t  the stresses in the bar are 
highly nonuniform. The reason is tha t  the material  close to the axis of the solid bar  remains 

in the small deformation s tate  up to the moment  that  the max imum stretch at  the outer 

surface of the bar  approaches the limit stretch ~ of the network. For practical purposes, 
it may be of interest however to have an approximate  tool to link the twisting of a solid bar 

to homogeneous simple shear. I f  the shear stress distribution is approximated to be linear 

over the entire cross-section,  the shear stress at the outer surface of the bar  T is readily 
found to be related to the applied torque M through the quanti ty T C  R defined in (19). To 

assess the accuracy of this approximation,  we plot in Fig.7 the torque responses found for 

the solid bar  in comparison with the shear stress a12 for homogeneous simple shear to a 

shear s t ra in /~  obtained by direct straightforward integration of the constitutive equations. 
I t  is seen tha t  the simple representation in te rms of T gives a reasonable est imate of the 

simple shear behaviour up to strains _P ~ 2.2 (see Fig.7). At larger strains, the linear shear 
stress distribution assumption is no longer valid due to the very strongle non-Gaussian effect 

and the simple representation in terms of r (19) cannot give an adequate  agreement with 
homogeneous simple shear. 

To enable a direct comparison with experimental  da ta  for vulcanized rubber  reported 
by Rivlin and  Saunders Is] we have taken the actual  dimensions to be the same as in Rivlin 
and Saunders Is], i.e. R = 1.27 cm and L --- 2.54 cm. Obviously, the values of the material  

parameters  N and C R have to be determined for a quanti tat ive prediction. As pointed out 

by Wu and Van der Giessen[ 13], the full network model as well as the simplified three-chain 

model and eight-chain model are able to reproduce experimental  rubber  stress-strain da ta  
for a certain deformation and material  by selecting the material  parameters  N and C R for 

the given model. A more impor tant  aspect appears  to be the description of the network 
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response under different states of  deformation. For that purpose, we take the following 
procedure [13,15]. The network parameters N and C R are fitted for equi-biaxial stretch data, 
and then used to predict fixed-end torsion. The equi-biaxiat stretching is characterized by 
the principal stretches Az = A2 = A, A3 = A -2 along fixed directions, while the material  is 
in a state of plane stress, i.e. 0"33 : 0. Figure 8 shows the true stress (0"11) response in the 
stretching direction, where the values of N = 50 and C R = 0.36 MPa were found to give 
the best correlation with the equi-biaxial tension data Is]. 
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Fig.8 Predicted true stress vs. stretch for 

equi-biaxial tension of a vulcanized 

rubber according to the full network 

m o d e l  w i t h  N = 5 0  a n d  CR=O.36MPa. 
T h e  e x p e r i m e n t a l  d a t a  is taken from [8] 

T h e  predicted  results  of  f ixed-end tors ion us ing  these  values  o f  the  parameters  are g iven  

in F igs .9  and 10. It is found tha t  the  predic ted  torque  response  is in a good  agreement  w i t h  

the  exp er imen ta l  results  (Fig .9) .  However ,  the  p r e d i c t e d  ax ia l  forces  are s y s t e m a t i c a l l y  lower in 

m a g n i t u d e  than  the  e x p e r i m e n t a l  measurements ,  M th o u g h  the  overall  trends  of  their  evo lu t ions  are 
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quite similar (Fig.10). It is noted however that the value of the experimentally measured axial force 
corresponding to /~ = 0 is not zero. That would, in general, be the case only if the material are 
anisotropic in the undeformed state. The initial anisotropy could be a result of the manufacturing 
process. 
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Fig.9 Predicted torque for fixed-end torsion 
of a vulcanized rubber according to the 
full network model with N ---- 50 and 
CR----0.36MPa. The experimental data 
is taken from [8] 
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V. D I S C U S S I O N  A N D  C O N C L U S I O N  

In this paper, w e  have analyzed the large-strain elastic torsion of axially constrained 

circular cylindricM bars of rubbers, based on the network models for rubber elasticity, using 

a semi-analytical method proposed by NeMe and Shrivastava [5]. 

Because of the stress and deformation gradients created in the solid bar and the de- 

velopment of hydrostatic pressure, the predicted responses for the torsion problem differ 

considerably from those for uniform simple shear. As expected, the stress distributions in 

the solid bar are quite nonuniform (see Fig.6). The reason for this is that  the material close 

to the axis of the bar remains in the small deformation state up to the moment that the 

maximum stretch at the outer surhce of the bar approaches the limit stretch ~ of the 
network. 

The compressive axial force induced in torsion is mainly due to the development 

and subsequent rotation of the  induced anisotropy. For the rubbers considered here, the 

anisotropy is associated with the stretching of the cross-linked molecular chain structure. It 

is found that  all three network models for rubber elasticity discussed in Section II give vir- 

tually identicalpredictions for shear strains up to /~  ~ 2. For larger twists, the three-chain 

model predicts very large compressive forces, but when using the eight-chain model, we see 

that  the magnitude of the axial force reduces drastically (see Fig.5). The predicted axial force 

based on the full network model is in between that  predicted by the three-chain model and 

the eight-chain model respectively. Furthermore, the sensitivity of this second-order axial 
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force to the adopted constitutive models for rubbers considered here is much less pronounced 
than  tha t  for metals [7]. Nevertheless, the predictions of the second-order optical propert ies 

in simple shear depend strongly on the network models for rubber  photoelasticity[ ls]. 

The approximation (11) to the full network model in terms of the three-chain and 

eight-chain representations is found to be very accurate up to very large twists not only 
for the shear stress but  also for the normal  stress. Based on this observation and the 
numerical tests on different types of deformation and rubbers [13'1s], we conclude here tha t  

this part icular  approximation to the full network model is a very accurate tool for different 

types of deformation over the entire range of strains. Since the full network model involves 
rather  t ime-consuming integrations, the approximat ion turns out to be very useful when one 

wishes to incorporate the model in finite element computat ions.  

The predicted response of a specimen according to the full network model has been 

compared with available experimental  da ta  for a vulcanized rubber', based on mater ial  prop- 
erties determined from an equi-biaxial tension test  for the same rubber.  Generally, the 

agreement is reasonable. Since equi-biaxial tension and torsion are rather  different defor- 
mation processes, the torsion analysis further supports  our conclusion[13,1s]; namely, that  

the full network model for rubber  elasticity does pick up the dependence of the s tate  of 
deformation observed experimentally in rubber  materials.  

Perhaps,  the most  impor tan t  difference between the simulated and experimental  re- 

sponse to torsion is tha t  our simulation tends to underes t imate  the second-order axial effect. 

However, it is important  to note tha t  the value of the experimental ly measured axial force 
corresponding t o / ~  -- 0 is not zero. In general, t ha t  would be the case only if the mater ial  

are anisotropic in the undeformed state. Such initial anisotropy could be induced during the 

manufactur ing processes. If  the specimen used in torsion test  is initially isotropic, a much 
bet ter  agreement between experimental  results and the predictions would be expected. 

With  regard to the constitutive models, we have noted tha t  there are several assump- 
tions tha t  underlie the present network concept, and which can act as potential  sources of 
discrepancy with experiments.  First of all, the affine deformation assumption is known to 

hold with high accuracy at low deformations, but  it has been suggested tha t  as the deforma- 

tion increases, the behaviour of a real network approaches the so-called phan tom network in 
which the junction points move independently of the continuum [22] . Secondly, we assumed 

that  the junctio~ points in the network provide permanent  nodes in the network; however, 

it has been suggested tha t  the molecular chains may also slide relative to each other at 
so-called sliplinks [23]. Finally, intermolecular effects are neglected in the present network 
models. However, when chains are rotated towards a common axis to such an extent tha t  

they become aligned up at  very large deformations, intermolecular interactions are no longer 
negligible. Molecular dynamics simulations [24] seem to indicate tha t  this may be a signifi- 

cant effect already at relatively small deformations in the Gaussian regime, and it may be 
expected to be ever more impor tant  at the large strain level. All these constitutive aspects 

require further s tudy both  theoretically and experimentally. 

A final related point is tha t  torsion with the ends free to displace axially, may perhaps 

be even more convenient from an experimental  point of view. Of part icular  importance is 
the development of significant axial strains during free-end torsion, and tha t  the prediction 

of this so, called Poynting effect [a] Shows a remarkably strong dependence on the constitutive 
models. However, the analysis of fre~-end torsion is significantly more involved. Obviously, 
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the  present  semi-analyt ical  me thod  is no longer valid fo r  free-end torsion.  Fortunately,  Wu 
and Van der Giessen [3,6'25] have developed a numerical  approach  based on a simple bu t  

effective dedicated finite element, which is suited for the  analysis of  large-strain tors ion of 

circular solid bars as well as thin-walled tubes  u n d e r  free-end condit ions as well as fixed-end 

and intermediate  condit ions.  
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