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The effect of superimposed hydrostatic pressure on fracture in round bars under tension is studied
numerically using the finite element method based on the Gurson damage model. It is demonstrated that
while the superimposed hydrostatic pressure has no noticeable effect on necking, it increases the fracture
strain due to the fact that a superimposed pressure delays or completely eliminates the nucleation,
growth and coalescence of microvoids or microcracks. The experimentally observed transition of the frac-
ture surface, from the cup-cone mode under atmospheric pressure to a slant structure under high pres-
sure, is numerically reproduced. It is numerically proved that the superimposed hydrostatic pressure has
no effect on necking for a damage-free round bar under tension.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the study of tensile fracture of 1045 spheroidized steel under
hydrostatic pressure, Kao et al. (1990) characterized void forma-
tion in the tensile test under pressure through quantitative metal-
lography, and analyzed the fracture mechanism under pressure in
terms of fractography. Kao et al. (1990) clearly demonstrated that
the influence of superimposed hydrostatic pressure on tensile frac-
ture of 1045 spheroidized steel was such that void nucleation is
suppressed, leading to larger post-uniform strains under pressure
and a transition of the fracture surface from the cup-cone mode
under atmospheric pressure to a slant structure under high pres-
sure (see Fig. 1). The work by Kao et al. (1990) further supported
the general trend: increasing pressure leads to a significant
increase in ductility and slight increase in flow stress.

In general, how superimposed hydrostatic pressure affects the
mechanical behavior of various different engineering materials
and their composites has been extensively investigated (see e.g.
Sauer et al., 1970; French et al.,, 1973; French and Weinrich,
1975; Weinrich and French, 1976; Brownrigg et al., 1983; Korbel
et al., 1984; Spitzig and Richmond, 1984; Ashby et al., 1985; Kao
et al, 1989, 1990; Liu and Lewandowski, 1993). Most of these
works were comprehensively reviewed by Lewandowski and
Lowhaphandu (1998). It has been generally accepted that superim-
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posed hydrostatic pressure increases the ductility of sheet metals
due to the fact that a superimposed pressure delays or completely
eliminates the nucleation, growth and coalescence of microvoids or
microcracks (see e.g. Gimple et al., 2001).

Very recently, Wu et al. (2009) have studied effects of superim-
posed hydrostatic pressure on sheet metal formability. The effect
of superimposed hydrostatic pressure was included in the analysis
of the forming limit diagram for sheet metals. It has been observed
that the superimposed hydrostatic pressure increases sheet metal
limit strains for any strain path. However, the analyses carried
out by Wu et al. (2009) underestimate the effect of superimposed
hydrostatic pressure on formability/ductility of sheet metals
because their analysis was based on the classic isotropic rate-inde-
pendent plasticity theory, in which the damage effect due to void
nucleation and growth was completely ignored. Without going to
any details, Wu et al. (2009) have also numerically demonstrated
the experimentally observed transition of the fracture surface,
from the cup-cone mode under atmospheric pressure to a slant
structure under high pressure.

The purpose of this paper is to carry out a detailed numerical
study of the influence of superimposed hydrostatic pressure on
fracture in round bars under tension. It is noted that Tvergaard
and Needleman (1984) have successfully studied the cup-cone
fracture in a round tensile bar at room pressure. However, to the
best of our knowledge, the effects of superimposed hydrostatic
pressure on fracture in a round tensile bar have not been numeri-
cally studied. All simulations reported in the present paper are
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Fig. 1. The appearance of the fractured tensile bars under applied pressure (from Kao et al., 1990).

performed using ABAQUS and the mechanical behavior of the
round bars are characterized by the Gurson damage model (Gur-
son, 1977; Tvergaard, 1990). Numerical results are found to be in
good agreement with experimental observations found in the liter-
ature. It is also demonstrated numerically that a superimposed
hydrostatic pressure has no effect on the uniform strain for damage
free materials.

2. Constitutive model

Gurson (1977) proposed a yield function of the form ¢(o, G,f)
for a porous plastic solid with a randomly distributed volume frac-
tion, f, of voids. Here, ¢ is the macroscopic Cauchy stress tensor and
o is the matrix flow strength. The original Gurson model has been
improved significantly (see e.g. Chu and Needleman, 1980; Tverg-
aard, 1981, 1982; Mear and Hutchinson, 1985; Chen et al., 2004;
Nahshon and Hutchinson, 2008). The approximate yield function
to be used in this paper is of the form

2
b0.0.5) =2 qreosh (P50) < [T @] =0 )

where the parameters q; and g, are calibration coefficients intro-
duced by Tvergaard (1981) to improve the agreement with numer-
ical studies of materials containing periodically distributed circular
cylindrical or spherical voids. The function f*(f) was introduced by
Tvergaard and Needleman (1984) to model the loss of stress carry-
ing capacity accompanying void coalescence, such that

for f < f
for f > f. 2)

e

V-,
where f is the porosity level at which void coalescence commences
and f; is the porosity level at final fracture. The parameter f; = 1/q,
is defined so that when f = f; the material has experienced a com-
plete loss of strength.

The evolution of void volume fraction is due to the growth of
existing voids and the nucleation of new voids:

f = (f)growth + (f)nucleation (3)
with the growth being a function of the plastic strain rate D’
(Fgrowen = (1 =1 : D? (4)
and the nucleation according to

(f)nucleation = Egp (5)

The parameter A is chosen so that nucleation follows a normal dis-
tribution as suggested by Chu and Needleman (1980):

- 2
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Here, ¢y is the average void nucleating strain, fy is the volume
fraction of void nucleating particles, sy is the standard deviation
of void nucleating strain. It is noted that voids are nucleated only
in tension; ABAQUS will not consider the nucleation term at a mate-
rial point if the stress state is compressive (g5 < 0). The condition
for nucleation (6) may lead to discontinuous results in cases where
pressure is equal to 0. In that case an infinitesimal variation of pres-
sure (doy) may result in a finite variation of the nucleation rate if
dGH > 0.

The uniaxial true stress-true strain curve for the matrix mate-
rial is described by the following power-law form:
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where o, is the yield stress, and n is the strain hardening exponent.
3. Problem formulation and method of solution

Mechanical testing with a superimposed hydrostatic pressure
has generally been conducted on similar devices (see e.g. Lewan-
dowski and Lowhaphandu, 1998). The specimen is inserted into
the load train assembly present in a pressure vessel. Following
pressurization of the fluid, the subsequent tension testing of the
specimen is conducted at the desired level of superimposed hydro-
static pressure.

We consider a round tensile bar, with initial length 2L, and ini-
tial radius Ry, under superimposed hydrostatic pressure as shown
in Fig. 2. Due to the symmetry, only half of the tensile bar is inves-
tigated. More specifically, Z = 0 is a symmetric plane, and a tensile
displacement is applied at Z = Ly. We further assume that Z = L is
a shear-free end.

The sequence of uniaxial tension under superimposed hydro-
static pressure is modelled as a two-step process. The first step is
pressurization (Fig. 2a). During this step the pressure fluid has ac-
cess to all surfaces of the specimen, and the magnitude of the pres-
sure is gradually increased up to a desired level p = —oog, with
o being a positive constant. The second step is to apply a tensile
displacement at Z = L, at the desired level of superimposed hydro-
static pressure p = —oa, (Fig. 2b). To trigger necking at the middle-
plane Z = 0, a small initial thickness inhomogeneity AR is assumed
in the form of

AR = — R, cos G—Z) (8)
0



J. Peng et al./International Journal of Solids and Structures 46 (2009) 3741-3749 3743

(@ R
p=-0co,
el | R R |
R, ‘_
| | Z
[ L,
(b) R
p=—ao’y
_______ -
F
P RB R‘r ?{>
1 | Z

\ L

Fig. 2. Schematic representation of a round tensile bar under superimposed
hydrostatic pressure (a) after pressurized to a desired level of pressure p = —agy,
and (b) elongated in the axial direction under the desired pressure p = —o0,.

It is important to note that in mechanical testing with superim-
posed hydrostatic pressure, the use of external load cells may
produce erroneous data for the load required to deform the speci-
men because of a variable amount of seal friction which results
during the pressurization in the vessel. In order to more accurately
measure the load on the specimen inside the vessel, pressure com-
pensated load cells consisting of a measuring load cell and a com-
pensating load cell have been developed (see Carpentier and
Contre, 1970). Before fracture occurs, from Fig. 2b, we have

F - oo, (nR%) =F-uao0, (nR% - nRﬁ)
or
F=F + aoymR; 9)

Note that TR? and 7R; are the cross-sectional areas of the planes at
Z =1Ly and Z = 0, respectively (see Fig. 2b). The above equation
describes the relationship between the internal force F and applied
force F under the superimposed hydrostatic pressure p = —0.0y.

It is important to point out that it is the applied load F and dis-
placement AL curve that is converted into the true stress and true
strain curves using Bridgman’s (1952) correction factor based on
the neck radius and neck profile radius during necking develop-
ment. It should be noted that both F and F are normalized by
0,mR: when they are plotted in figures shown in next section.

4. Results and discussion

4.1. Effects of superimposed hydrostatic pressure on necking in
damage-free materials

We would like to start with assessing the effects of superimposed
hydrostatic pressure on necking in damage-free round tensile bars.

It has been documented that, for most monolithic metals, a
superimposed hydrostatic pressure significantly increases the frac-
ture strain but has no noticeable effect on the uniform strain or
necking strain (see e.g. Lewandowski and Lowhaphandu, 1998).
The uniform strain is the strain at which diffuse necking is initi-
ated. In an attempt to assess the effect of superimposed hydrostatic
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Fig. 3. Mesh A with 28 x 42 quadrilateral elements (28 in the radius direction and
42 in the axial direction), each built up with four linear triangular elements (CAX3
in ABAQUS/Explicit).

pressure on uniform strain for damage free metals, Wu et al. (2009)
developed a Considére-type criterion to determine the onset of
inhomogeneous deformation. They stated that such a criterion
should be based on the condition of dF = 0 (rather than dF = 0).
Apparently, it is very difficult to mathematically prove that
dF = 0 is more appropriate than dF = 0 for determining the onset
of necking and vice verse. However, this assessment can be done
numerically. All simulations reported in Section 4.1 assume that
there is neither initial void nor void nucleation, so that the Gurson
model in (1) reduces to the classical von Mises plasticity theory,
which was used in Wu et al. (2009). More specifically, the elas-
tic-plastic properties of the damage-free round tensile bars are
specified by o, =1MPa, g,/E =0.0033, v=0.3 and n = 10. We
further assume that the initial length to radius ratio is given by
Lo/Ro =2, and the value of the initial imperfection in (8) is
assumed to be ¢ = 0.001. In this classical necking problem, numer-
ical results will not be very sensitive to a mesh used. We use a
mesh, Mesh A as shown in Fig. 3, with local refinement around
the middle-plane, and with total of 28 x 42 quadrilateral elements
(28 in the radius direction and 42 in the axial direction), each built
up with four linear triangular elements (CAX3 in ABAQUS/Explicit).

Fig. 4 shows the calculated internal force F and axial strain ¢
curves under different superimposed hydrostatic pressures. It is
found that the strain at which the internal force F reaches its

0 PR T T T I T T N N A M O B A
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£

Fig. 4. Predicted internal/net force F and tensile strain ¢ = In(1 + AL/Ly) curves for
the a damage free round bar under superimposed hydrostatic pressure p = —o0,.
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Fig. 5. Predicted applied force F and tensile strain & = In(1 4 AL/L,) curves for a
damage free round bar under superimposed hydrostatic pressure p = —aa,.

maximum increases with increasing pressure. This would imply that
the superimposed hydrostatic pressure could delay necking if the
condition dF = 0 was used to define the onset of necking. Using
(9), the F—e¢ curves in Fig. 4 are converted into the F—¢ curves in
Fig. 5. It is found that the F—¢ curves in Fig. 5 are actually identical.
It is worthwhile to point out that the F—¢ curves converted from
the F—¢ curves according to (9) are identical to those directly calcu-
lated from the reaction force at Z = L. This implies that the round
tensile bar is truly under the superimposed hydrostatic pressure
during the entire uniaxial tension process. From Fig. 5, one would
conclude that the superimposed hydrostatic pressure could have
no effect on the uniform strain if dF = 0 was used to define the onset
of necking. The onset of necking and its evolution could be best pre-
sented in terms of the minimum radius R, and axial strain ¢ curves,
which are now shown in Fig. 6. It is clear that the calculated

1 homogeneous deformation
/ (@=0)
0.8
0.6
min B

04

0.2 '*\__.\-‘
0_||||\\||-|\\|||-\|-||.||I\\.\

0 0.1 02 0.3 0.4 0.5 0.6
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Fig. 6. Predicted normalized minimum radius (Rmin/Ro) and tensile strain
e=1In(1+AL/Ly) curves for a damage free round bar under superimposed
hydrostatic pressure p = —a0,.

minimum radius Ry, and axial strain ¢ curves under different super-
imposed hydrostatic pressures are identical. Examining deformed
meshes at the same strain levels indicate that the necking profiles
under different superimposed hydrostatic pressures are also identi-
cal. It thus becomes clear that the superimposed hydrostatic pres-
sure has no effect on necking for damage free materials, and that
dF = 0 is appropriate to define the onset of necking.

4.2. Effects of superimposed hydrostatic pressure on fracture in porous
materials

We now proceed by considering round tensile bars made of a por-
ous material, which is described by the Gurson model. The elastic—-
plastic properties of the matrix material are specified by
o, =1MPa, 0,/E=0.0033, v=0.3 and n = 10. We assume that
there are no initial voids, and the parameters g; = 1.0 and g, = 1.5
are used in the yield function (1). The void nucleation is assumed
to be plastic strain controlled, with the volume fraction fy = 0.04
of void nucleating particles, the mean strain for nucleation
ey = 0.3, and the corresponding standard deviation sy = 0.1. The fi-
nal failure is taken to be characterized by the parameters
fe=0.15 and f; = 0.25. Similar to the damage-free round tensile
bars, the initial length to radius ratio is given by Ly/Ro = 2, and the
value of the initial imperfection in (8) is assumed to be ¢ = 0.001.
It is important to point out that these values of the geometrical
and material parameters are the same as those used in Tvergaard
and Needleman (1984).

Significant mesh sensitivity is usually expected in a numerical
simulation involving deformation localization and failure. For the
problem considered in the present paper, as already mentioned by
Tvergaard and Needleman (1984), the initial mesh design required
for an analysis of final failure in a round tensile bar is essentially con-
trolled by the first occurrence of fracture in the centre of the neck.
Since Tvergaard and Needleman (1984) have carefully studied the
mesh sensitivity in their analysis of the cup-cone fracture in a round
tensile bar, we start with Mesh A (already shown in Fig. 3), which is
very similar to the one used in Tvergaard and Needleman (1984). A
finer mesh, Mesh B, consisting of 56 x 84 quadrilateral elements
(56 in the radius direction and 84 in the axial direction) with local
refinement near the middle-plane, is also used in the present work
but mainly for the mesh sensitivity study.

We first consider the round tensile bar under uniaxial tension
without a superimposed hydrostatic pressure (p = 0). It is impor-
tant to bear in mind that the main purpose of the present study
is to assess the effects of superimposed pressure on fracture in a
round tensile bar. Since the geometry and the values of the mate-
rial parameters are exactly same as in Tvergaard and Needleman
(1984), we only briefly explain how the cup-cone fracture surface
is formed in a round tensile bar without superimposed hydrostatic
pressure. For details, we refer to Tvergaard and Needleman (1984).

Fig. 7 presents the calculated tensile force Fas a function of the ten-
sile true strain ¢ = In(1 + AL/Ly), where AL is the displacement. For a
comparison, the results based on homogeneous deformation are also
included. It is found that the force increases linearly with the imposed
straining when the deformation is very small and the material is
essentially in the elastic state. With continued straining, the force
gradually reaches its maximum at around ¢ = 0.1 and then gradually
decreases due to both the reduction of the cross-sectional area and
the softening effect resulting from void nucleation and growth. Fur-
ther straining results in a sharp “knee” on the force and axial strain
curve, which is associated with reaching the critical value of the void
volume fraction (f. = 0.15) in the centre of the neck. Immediately
after the sharp knee, the burst of void nucleation and growth leads
to a rapid drop in true stress which in turn results in a rapid lose of
load carry capacity for the tensile bar. From Fig. 7, it is clear that neck-
ing and failure in the fine mesh (Mesh B) occur earlier than those
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homogeneous
deformation

Fig. 7. Predicted applied force F and tensile strain ¢ = In(1 + AL/Lo) curve for the
round bar under atmospheric pressure (p = 0).

based on the crude mesh (Mesh A). However, both meshes predict
quite similar necking and fracture processes. The development of
necking and failure processes can be more evidently presented in
terms of the minimum cross-sectional area An,;, vs. axial strain. For
the axisymmetric problem considered here, Ayin = Tchnin with Ruin
being the minimum radius in the necked region. Fig. 8 shows the
calculated minimum radius and axial strain curve. Necking occurs
where the curve deviates from that corresponding to the homoge-
neous tension. It is interesting to note that when fracture occurs, neck
development essentially stops (Rn;, is almost a constant). As already
pointed out by Tvergaard and Needleman (1984), this implies that the
reduction in area at fracture is a representative measure of the onset
of macroscopic fracture in the tensile test. Fig. 8 also indicates that
both meshes predict quite similar necking and failure process with
the finer mesh picking an earlier necking and failure.

Deformed meshes at various deformation stages are shown in
Fig. 9. Since Mesh A will be used in the rest of the present paper,
our explanations will mainly correspond to Mesh A with some

Mesh A

£=0.250

1.1
1
homogeneous
B deformation
0.9 \/
& : \\
0.8
: Mesh B
o7 N Mesh A
i L n L L 1 L n L L 1 L n L L 1 L
0'60 0.1 0.2 0.3

&

Fig. 8. Predicted normalized minimum radius (Rmin/Ro) and tensile strain
& =1n(1+ AL/Lo) curve for the round bar under atmospheric pressure (p = 0).

reference to Mesh B for the purpose of further assessing the mesh
sensitivity. The predicted distributions of void volume fraction f at
different deformation stages based on Mesh A are presented in
Fig. 10. Using Mesh A, it is found that, at the axial strain around
0.270, fracture initiates at the centre of the neck, where the maxi-
mum stress triaxiality (T = oy /0.) is expected to occur. Due to the
significant constraint resulting from the axisymmetry, the crack
initially propagates almost vertically along the middle plane. This
constraint becomes less and less with the distance from the centre
of the neck. At an axial strain of 0.275, the crack has progressed about
half way through the bar and tends to move away from the middle-
plane and along the shear bands (though relatively weak and not
clearly exhibited in Figs. 9 and 10). The evidence of the crack moving
away from the middle-plane can be observed from the deformed
meshes at an axial strain of about 0.264 based on Mesh B (Fig. 9).
With further straining, the inclined crack has stopped and begins
to zig-zag. The amplitude of the zig-zag increases as the crack
approaches the free surface, where the axisymmetry constraint

Mesh B

£=0.262

£=0.264

£=0.265

Fig. 9. Deformed meshes at various deformation stages for the round bar under atmospheric pressure (p = 0).
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Fig. 10. Curves of constant void volume fraction at various stages for the round bar
under atmospheric pressure. (a) ¢ = 0.270, (b) & =0.274, (c) ¢ =0.281, and (d)
&=0.289.

has been reduced significantly. This crack perturbation produces the
cone of the cup-cone fracture surface. It is clear that both meshes are
able to show the cup-cone fracture mechanism. The main difference
between Mesh A and Mesh B is that the finer mesh detects fracture
earlier and produces a relatively larger cone. Carefully examining
the deformed meshes confirms that the initial zig-zag of the crack
near the neck centre depicted in Fig. 13 of Tvergaard and Needleman
(1984) was an artefact of the mesh they used. As mentioned by
Tvergaard and Needleman (1984), it should be noted that the
present study assumes symmetry about the middle-plane and thus
two symmetrical conical fracture surfaces are predicted. However,
in reality one of these cracks will finally dominate, which results in
the cup-cone fracture observed experimentally (see also Besson
etal., 2001).

Based on the above observations and the fact (which will
become clear later) that the mesh sensitivity will be significantly
reduced with an increase of the superimposed hydrostatic pres-
sure, Mesh A will be used in the rest of the present paper although
it is still crude in relation to the crack tip field. However, Mesh B
was also applied in some cases, although not reported in the pres-
ent paper, to further validate the numerical simulations.

We proceed by studying the effects of superimposed hydro-
static pressure p = —xo, on fracture in the round tensile bar.
Fig. 11 shows the applied/measured tensile force F and axial strain
¢ curves. From Fig. 11, it is found that the hydrostatic pressure does
not affect the maximum applied force point (the magnitude of the
maximum force and the strain at which the maximum force is
reached). However, the hydrostatic pressure clearly delays the
sharp knee on the applied force vs. axial strain curve, and the

homogeneous deformation

(@=0)

0.8

0.6

e
R
I
e
<N

0.4

a=0

0\|\|||\|||||\|||\|\J
0 0.1 0.2 0.3 04 0.5 0.6

Fig. 11. Predicted applied force F and tensile strain ¢ = In(1 + AL/Lo) curves for the
round bar under superimposed hydrostatic pressure p = —xa,.

sharpness of the knee reduces significantly with increasing hydro-
static pressure. At high a pressure (p = —o,) the knee disappeared
and the applied force could decrease gradually to zero, which is
consistent with the results reported by French and Weinrich
(1975). Also from Fig. 11, it seems that the hydrostatic pressure
has no noticeable effect on necking but only affects the deforma-
tion behavior after necking has started, which is consistent with
most experimental findings (see e.g. French et al., 1973). As men-
tioned previously, the development of necking and failure can be
very effectively assessed in terms of the calculated minimum
radius vs. axial strain curve, which is now presented in Fig. 12. In
the figure, the open circles represent the fracture initiation, while
the solid squares indicate the completion of the fracture. It

1
- homogeneous deformation
0.8
0.6
Ruw |
R, -
0.4
0.2
i a=0.6 a=1
0_|w\w\\\\|\|w\|\\|\|||||:|||w|
0 0.1 02 0.3 0.4 0.5 0.6
&

Fig. 12. Predicted normalized minimum radius (Rmin/Ro) and tensile strain
&=1In(1+AL/Ly) curves for the round bar under superimposed hydrostatic
pressure p = —ogy. The open circles represent the fracture initiation, while the
solid squares indicate the completion of the fracture.
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(d)

Fig. 13. Curves of constant void volume fraction at various stages for the round bar
under superimposed hydrostatic pressure p = —0.20,. (a) £ = 0.292, (b) ¢ = 0.300,
(c) €=0.311, and (d) ¢ = 0.326.

becomes clear from Fig. 12 that the hydrostatic pressure has no
noticeable effect on necking. It is also found that the reduction in
area at completed failure increases significantly with increasing
hydrostatic pressure. It is noted that without superimposed hydro-
static pressure fracture initiates at ¢ =0.270 and the failure
process is completed at 0.289. Under the hydrostatic pressure
p = —0.60y, these numbers become 0.356 and 0.519, respectively.
Therefore, the superimposed hydrostatic pressure not only delays
the initiation of cracking but also extends the failure process (from
initiation of cracking to completely fracture).

Figs. 13 and 14 show the predicted distributions of void volume
fraction under superimposed hydrostatic pressure
p=-020y and p = —0.60,, respectively. It is clear that a superim-
posed hydrostatic pressure makes a transition of the fracture surface
from the cup-cone mode under atmospheric pressure (see Fig. 10) to
smoother fracture surfaces under even relatively low pressures. The
delay of fracture can be explained by showing how the superim-
posed hydrostatic pressure p = —o0g), influences the hydrostatic
stress oy = 1(0 + 0 + 0y) inside the necked region. Fig. 15 pre-
sents the hydrostatic/triaxial stress oy at the centre of the neck,
where fracture initiates, as a function of axial strain ¢ at room pres-
sure p =0 and superimposed hydrostatic pressures p = —0.20,
and p = —0.40,. Fig. 15 also includes the calculated hydrostatic
stress oy from the corresponding homogeneous deformations. For
a given pressure, necking initiates where the curve deviates from
the one that corresponds to homogeneous deformation. It is clear
from Fig. 15 that in the range considered the superimposed hydro-
static pressure has no significant effect on necking. During tensile
deformation at room pressure p =0, the triaxial tensile stress

. [=0.05

Jo.1

Fig. 14. Curves of constant void volume fraction at various stages for the round bar
under superimposed hydrostatic pressure p = —0.60,. (a) ¢ = 0.364, (b) ¢ = 0.375,
(c) €=0.397, and (d) ¢ = 0.429.

developed in the centre of neck is such as to assist the void growth.
However, under a superimposed hydrostatic pressure p = —ao,,
the triaxial stress oy is initially compressive (g5 = p = —oay). This
implies that void nucleation and void growth are delayed until a suf-
ficiently large tensile component of stress is introduced. As also
mentioned by French et al. (1973), the greater the superimposed
hydrostatic pressure the greater the degree of necking required to

0.8

0.6

H 0.4

0.2

-02

L B I

_ FINN TN TR TN NN T TN TN T Y Y T TN NN TS TN T T N N T S |
O-fO.l 0 0.1 0.2 0.3 0.4

Fig. 15. Predicted hydrostatic stress oy at the centre of neck under superimposed
hydrostatic pressure p = —aay. The dashed lines are those from the corresponding
homogeneous deformations.
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Fig. 16. Predicted void volume fraction f at the centre of neck under superimposed
hydrostatic pressure p = —xa,.

overcome the triaxial compressive stress at the centre of neck which
counteracts the void nucleation and hence the greater the strain
which can be withstood before fracture. Fig. 16 shows the predicted
void volume fraction f at the centre of the neck under various super-
imposed hydrostatic pressures. It is clear that a superimposed pres-
sure delays or could even completely eliminate the nucleation,
growth and coalescence of voids. Figs. 15 and 16 also indicate that
significant void growth has not occurred prior to necking. This is
the reason for why a superimposed hydrostatic pressure has no
noticeable effect on necking even for the porous materials described
by the Gurson model.

Fig. 17 presents the calculated effect of superimposed hydrostatic
pressure on the fracture strain &. The fracture strain is defined as
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Fig. 17. Predicted effect of superimposed hydrostatic pressure p = —x0, on fracture
strain &.

& =1In ﬁ—‘; , Where Ay is the original cross-sectional area and A¢ the
final cross-sectional at the neck. It is found that the fracture strain
increases with pressure nearly linearly at low pressures but at an
increasing rate at high pressures. This is consistent with the results
for cold worked copper reported by Li et al. (1964-1965). However,
it should be pointed out that the predicted increase in ductility
depends on the material and geometrical parameters used.

The mechanism of how a superimposed hydrostatic pressure
could change the fracture surface from the cup-cone to a smoother
surface is perhaps due to the fact that the superimposed pressure
enhances the axisymmetry constraint. The greater the superim-
posed hydrostatic pressure, the greater the axisymmetry
constraint reached inside the neck. Above a critical level of super-
imposed hydrostatic pressure, the axisymmetry constraint
becomes so high that the initiated crack has to propagate along
the middle-plane. It is expected that such a critical pressure level
depends on geometrical and mechanical properties of the round
tensile bar considered. By comparing Figs. 13 and 14 to Fig. 10, it
is expected that under very high superimposed hydrostatic pres-
sures the minimum radius Ry, would approach zero.

5. Conclusions

In this paper, we have carried out a detailed finite element anal-
ysis of uniaxial tension under superimposed hydrostatic pressure.
It has been demonstrated that, while a superimposed hydrostatic
pressure has no noticeable effect on necking because significant
void growth has not occurred prior to necking, the superimposed
hydrostatic pressure significantly increases the fracture strain. This
increment in ductility has been found to be due to the fact that a
superimposed pressure delays or completely eliminates the nucle-
ation, growth and coalescence of microvoids or microcracks.
Numerical results have also indicated that a superimposed hydro-
static pressure changes the fracture surface from the cup-cone
mode at room pressure to a slant structure under high pressure.
It is important to keep in mind that while the significant increase
in fracture strain is predicted with confidence, the calculated sub-
tle change in appearance of fracture surface due to the superim-
posed hydrostatic pressure could be very sensitive to the mesh
used and may even be an artefact of the mesh.

We have also numerically proved that a superimposed hydro-
static pressure has no effect on the necking strain for damage free
round bars under axial tension. A Considére-type criterion based
on the condition of dF = 0 (rather than dF = 0) is appropriate to
determine the onset of inhomogeneous deformation.

While we have studied the effect of superimposed hydrostatic
pressure on fracture only in round tensile bars, experimental work
has shown that a superimposed hydrostatic pressure increases the
fracture strain under tension and enhances the bendability under
bending in sheet metals (see e.g. Weinrich and French, 1976; Gim-
ple et al., 2001; Kao et al., 1989). Numerical simulations of the ef-
fect of superimposed hydrostatic pressure on fracture in sheet
metals are in progress and will be reported elsewhere.
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