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a b s t r a c t

Sheet metal formability is assessed in terms of the Forming Limit Diagram (FLD) for magnesium alloys
with Hexagonal Close Packed (HCP) crystallographic structure. All simulations are based on the recently
developed elastic–visco-plastic self-consistent (EVPSC) model and the classical Taylor model, in conjunc-
tion with the M–K approach. The role of crystal plasticity models and the effects of basal texture on form-
ability of magnesium alloy AZ31B sheet are studied numerically. It is observed that formability in HCP
polycrystalline materials is very sensitive to the intensity of the basal texture. The path-dependency of
formability is examined based on different non-proportional loading histories, which are combinations
of two linear strain paths. It is found that while the FLD in strain space is very sensitive to strain path
changes, the Forming Limit Stress Diagram (FLSD) in stress space is much less path-dependent. It is sug-
gested that the FLSD is much more favourable than the FLD in representing forming limits in the numer-
ical simulation of sheet metal forming processes. The numerical results are found to be in good
qualitative agreement with experimental observations.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction (1987) and Lebensohn and Tomé (1993) and the Taylor-type model
The concept of the Forming Limit Diagram (FLD) has been used
to represent conditions for the onset of sheet necking (see, e.g.
Hecker, 1975); this is now a standard tool for characterizing mate-
rials in terms of their overall forming behavior. Most theoretical
and numerical FLD analyses have been based on the so-called
M–K approach, developed by Marciniak and Kuczynski (1967).
Within the M–K framework, the influence of various constitutive
features on FLDs has been explored using phenomenological plas-
ticity models (see, e.g. Neale and Chater, 1980; Wu et al., 2003) and
crystal plasticity (see, e.g. Zhou and Neale, 1995; Wu et al., 1997;
Inal et al., 2005; Signorelli et al., 2009). Using the M–K approach,
the predicted FLDs based on crystal plasticity were in good agree-
ment with measured FLDs for rolled aluminum alloy sheets (Wu
et al., 1998; Knockaert et al., 2002). However, almost all the FLD
analyses have been for polycrystalline sheet metals with Face
Centered Cubic (FCC) and Body Centered Cubic (BCC) crystallo-
graphic structures. Only very recently, Neil and Agnew (2009)
and Lévesque et al. (2010) carried out crystal plasticity based FLD
analyses for magnesium alloys with Hexagonal Close Packed
(HCP) crystallographic structure, based on respectively the visco-
plastic self-consistent (VPSC) model developed by Molinari et al.
ll rights reserved.

92; fax: +1 905 572 7944.
proposed by Kalidindi (1998).
In the present paper, an FLD analysis for magnesium alloy

AZ31B sheet is carried out based on the elastic–visco-plastic self-
consistent (EVPSC) model recently developed by Wang et al.
(2010c) and the classical Taylor model (Taylor, 1938), in conjunc-
tion with the M–K approach. The main purposes of this paper are
to study (1) the effect of basal texture on formability; (2) the role
of constitutive model on predicted FLDs; and (3) the path-
dependency of formability. To the best of our knowledge, all these
three important aspects have not been addressed for HCP polycrys-
talline sheets.

First of all, it is well-known that conventionally processed mag-
nesium sheet exhibits very limited formability, due to the limited
number of plastic deformation modes available. This can be
explained based on the deformation behavior of magnesium single
crystals deformed in uniaxial or biaxial tension with the basal
plane parallel to the loading direction. In this case, the imposed
extension is accompanied by contraction normal to the loading
axis, in the direction tangential to the basal plane; very limited
reduction normal to the basal plane is observed, and the crystals
exhibit low ductility (Reed-Hill and Robertson, 1957). This behav-
ior has strong implications for the room temperature formability of
HCP magnesium wrought alloys, in which the basal planes typi-
cally lie preferentially in the plane normal to the primary compres-
sion direction imposed during processing. However, recent
experimental works have revealed that formability of magnesium
sheets can be significantly improved through texture optimization
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by mainly re-orientating basal plane. For example, Huang et al.
(2008) have reported an increase in the uniform strain prior to
necking in AZ31 sheet produced by differential speed rolling
(DSR), where the basal poles are tilted �15� in the rolling direction
(RD). Chino et al. (2008) have observed enhanced tensile ductility
of AZ31 bar through torsional extrusion (TE), where the basal poles
are inclined �30� to the extrusion direction. Mukai et al. (2001)
and Agnew et al. (2004) have shown that enhanced ductility can
be achieved through equal channel angular extrusion (ECAE),
where the basal planes are preferentially inclined �45� to the
extrusion direction. In a recently study, Wang et al. (2010b) inves-
tigated the influence of basal texture on the uniform strain under
uniaxial tension and the limit strain under in-plane plane strain
tension. This preliminary study suggested that formability can be
significantly improved by controlling texture even without grain
refinement. The present paper carries out a detailed study on the
effects of basal texture on FLDs.

Secondly, it is also well-known that predicted FLDs are sensitive
to the constitutive modes employed (see, e.g. Wu et al., 2003).
Motivated by the works on effects of texture on formability of alu-
minum alloy sheets (Wu et al., 2004a; Kuroda and Ikawa, 2004;
Yoshida et al., 2007). Signorelli and Bertinetti (2009) recently
investigated how the cube texture affects the formability of FCC
sheet metals. It was found that the predicted FLDs based on the
VPSC model are quite different to the ones based on the classical
Taylor model. In the present paper, the role of the constitutive
model on formability of HCP sheet metals is assessed by comparing
the predicted FLDs based on the EVPSC model with various self-
consistent schemes and the classical Taylor model.

Finally, both experimental and numerical results have indicated
that FLDs for FCC and BCC sheet metals are very sensitive to strain
path changes (see, e.g. Kikuma and Nakajima, 1971; Laukonis and
Ghosh, 1978; Graf and Hosford, 1994; Zhao et al., 1996; Hiwatashi
et al., 1998; Kuroda and Tvergaard, 2000; Wu et al., 2000, 2005).
Knowing the drawback of conventional FLDs, Arrieux et al. (1982),
among others, represented formability based on the state of stress
rather than the state of strain. They constructed a Forming Limit
Stress Diagram (FLSD) by plotting the calculated principal stresses
at necking. It was concluded that all FLSDs, based on phenomenolog-
ical plasticity models such as Hill (1948) and Hosford (1979) and
crystal plasticity theory (Asaro and Needleman, 1985), were almost
path-independent (Arrieux, 1995; Zhao et al., 1996; Stoughton,
2000; Stoughton and Zhu, 2004; Wu et al., 2000, 2005). However, ef-
fects of strain path changes have not been studied for HCP polycrys-
talline sheets. This paper examines the path-dependency of the
formability for HCP polycrystalline sheets. In these simulations,
non-proportional loading histories are developed using combina-
tions of two linear strain paths. The first strain path, the pre-strain
operation, is common to all loading histories. Subsequent linear
deformation paths are imposed by varying the strain-rate ratio for
the development of an FLD applicable to that given pre-strain path
and amount.

The paper is outlined as follows. In Section 2, the EVPSC model
is briefly introduced. The problem is formulated in Section 3.
Followed by the calibration of the models against experimental
stress–strain curves, numerical results and discussions are
provided in Section 4. Finally, Section 5 presents conclusions.

2. Constitutive model

The elastic–visco-plastic self-consistent (EVPSC) model for
polycrystals recently developed by Wang et al. (2010c) is a
completely general elastic–viscoplastic, fully anisotropic, self-
consistent polycrystal model, applicable to large strains and to
any crystal symmetry. Here, we very briefly describe the model.
For details we refer to Wang et al. (2010c).
The elastic constitutive equation for a crystal is:

r
r�
¼ L : de � rtrðdeÞ; ð1Þ

where L is the fourth order elastic stiffness tensor, de is the elastic
strain rate tensor and r

r�
is the Jaumann rate of the Cauchy stress

r based on the lattice spin tensor we. The single crystal elastic
anisotropy is included in L through the crystal elastic constants Cij

(Wang and Mora, 2008). If elasticity is assumed to be isotropic, L
is a function only of Young’s modulus, E, and Poisson’s ratio, t.

Plastic deformation of a crystal is assumed to be due to crystal-
lographic slip and twinning on systems (sa,na). Here, sa and na are
the slip/twinning direction and the direction normal to the slip/
twinning plane for system a, respectively. The following equation
gives the grain (crystal) level plastic strain rate dp (see, e.g. Asaro
and Needleman, 1985):

dp ¼ _c0

X
a

Pa sa

sa
cr

����
����

1
m�1 sa

sa
cr
; ð2Þ

where _c0 is a reference value for the slip/twinning rate, m is the slip/
twinning rate sensitivity, Pa = (sana + nasa)/2 is the Schmid tensor
for system a, and sa = r : Pa and sa

cr are the resolved shear stress
(RSS) and critical resolved shear stress (CRSS) for system a, respec-
tively. The evolution of sa

cr due to hardening processes is given by:

_sa
cr ¼

dŝa

dcac

X
b

hab _cb; ð3Þ

where cac ¼
P

ajcaj is the accumulated shear strain in the grain, and
hab are the latent hardening coupling coefficients, which empirically
account for the obstacles on system a associated with system b.
ŝa is the threshold stress and is characterized by:

ŝa ¼ sa
0 þ ðsa

1 þ ha
1cacÞ 1� exp �ha

0

sa
1
cac

� �� �
: ð4Þ

Here, s0, h0, h1 and s0 + s1 are the initial CRSS, the initial hardening
rate, the asymptotic hardening rate, and the back-extrapolated
CRSS, respectively. The polar nature of twinning is incorporated into
the model simply by specifying a very large CRSS for the reverse
direction.

Various homogenization methods have been developed to char-
acterize the mechanical behavior of a polycrystalline aggregate
from the responses of their single crystals. Among them, the most
popular Taylor model assumes that the strains of each grain are
equal to the imposed macroscopic strains, and the macroscopic
stresses are the average of the stresses over all the grains. Another
popular homogenizing method is the self-consistent approach:
each grain is treated as an ellipsoidal inclusion embedded in a
Homogeneous Effective Medium (HEM), which is an aggregate of
all the grains. Interactions between each grain and the HEM are de-
scribed using the Eshelby inclusion formalism (Eshelby, 1957).
During each deformation step, the single crystal constitutive rule
(which describes the grain-level response) and the self-consistency
criteria are solved simultaneously. This ensures that the grain-level
stresses and strain rates are consistent with the boundary condi-
tions imposed on the HEM. The behavior of the inclusion (single
crystal) and of the HEM can be linearized as follows (Wang et al.,
2010c):

d ¼ Me : _rþMv : rþ d0; ð5Þ
D ¼Me : _RþMv : Rþ D0; ð6Þ

where Me, Mv and d0 are the elastic compliance, the visco-plastic
compliance, and the back-extrapolated term for the grain, respec-
tively. Me;Mv ;D;R and D0 are the corresponding terms for the
HEM. The grain-level stress and strain rates are related self-consis-
tently to the corresponding values for the HEM as follows:



Fig. 1. The geometry and convention employed in the FLD analysis.
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ðd� DÞ ¼ �fMe : ð _r� _RÞ �fMv : ðr� RÞ; ð7Þ

where the interaction tensors fMe and fMv are given by:

fM e ¼ ðI � SeÞ�1 : Se : Me; fMv ¼ ðI � SvÞ�1 : Sv : Mv : ð8Þ

Here, Se and Sv are the elastic and visco-plastic Eshelby tensors for a
given grain, respectively. I is the identity tensor.

Different self-consistent schemes (SCSs) depend on different
choices for the linearization. Among various SCSs, the Secant SCS
employs the following linearization:

Mv;secant
ijkl ¼ _c0

P
a

sa

sa
cr

� �1
m�1 Pa

ij P
a
kl

sa
cr
;

dsecant
0ij ¼ 0;

ð9Þ

while the Affine SCS applies the linearization:

Mv;affine
ijkl ¼

_c0

m

X
a

sa

sa
cr

� �1
m�1 Pa

ijP
a
kl

sa
cr

;

daffine
0ij ¼ 1� 1

m

� �
dg

ij:

ð10Þ

With the aid of the Tangent and Secant relation: Mv ;tangent ¼
Mv ;secant=m (Hutchinson, 1976), the interaction tensor in the
Tangent self-consistent scheme is given by:

fMv ¼ 1
m
ðI � SvÞ�1 : Sv : Mv ;secant : ð11Þ

Molinari and Tóth (1994) introduced a scalar interaction
parameter meff by tuning the self consistent predictions with the
finite element results. The resulted meff SCS provides an intermedi-
ate interaction tensor:

fMv ¼ 1
meff

I � Sv� ��1
: Sv : Mv;secant: ð12Þ

The scheme would produce a rigid upper bound solution when
meff =1. If meff = m is assumed, this scheme reduces to the Tangent
scheme (see also Tomé (1999)).

For details concerning the self-consistent equations associated
with the different visco-plastic self-consistent algorithms, we refer
the interested reader to Lebensohn et al. (2007).

Very recently, Wang et al. (2010a) evaluated several self-
consistent approaches by studying the large strain behavior of
magnesium alloy AZ31B sheet under different deformation pro-
cesses. It was found that, of the approaches examined, the Affine
self-consistent and meff self-consistent with interaction stiffness
between the Secant (stiff) and Tangent (compliant) give the best
results. Therefore, the EVPSC model with the Affine self-consistent
scheme and meff self-consistent scheme, together with the classical
Taylor model, are employed to study the role of constitutive model
on FLDs.

To model the twinning activity, the Predominant Twin Reorien-
tation (PTR) scheme proposed by Tomé et al. (1991) is used. PTR
prevents grain reorientation by twinning until a threshold value
Ath1 is accumulated in any given system and rapidly raises the
threshold to a value around Ath1 + Ath2.

For simplicity, EVPSC models with the Affine and meff SCSs are
respectively called the Affine and meff models in the rest of the
present paper.

3. Problem formulation and method of solution

Following the numerical procedure developed by Wu et al.
(1997), the EVPSC model outlined above, in conjunction with the
M–K approach, is implemented into a numerical code for
constructing the FLDs. We assume that the axes x1 and x2 define
the rolling direction (RD) and the transverse direction (TD) in the
plane of the sheet, while x3 represents the direction normal to
the sheet (ND). The basic assumption of the M–K approach is the
existence of material imperfections in the form of grooves that is
initially inclined at an angle wI with respect to the x1 reference
direction (Fig. 1). Marciniak and Kuczynski (1967) showed that a
slight intrinsic inhomogeneity in load bearing capacity throughout
a deforming sheet can lead to unstable growth of strain in the
region of the imperfection, and subsequently cause localized
necking and failure. In the present paper, quantities inside the
groove are denoted by ( )b. The thickness along the minimum sec-
tion in the groove is denoted by hb(t), with an initial value hb(0).
The initial geometric non-uniformity is defined by

f0 ¼
hbð0Þ
hð0Þ ð13Þ

with h(0) being the initial sheet thickness outside the imperfection
groove.

The deformation outside the imperfection groove is assumed to
be:

D22

D11
¼

_e22

_e11
¼ q; D12 ¼ 0; W12 ¼ 0; ð14Þ

where _e11 ¼ D11 and _e22 ¼ D22 are the (principal) logarithmic strain
rates and the Wij values are components of the spin tensor. It is fur-
ther assumed that D13 = D23 = W13 = W23 = 0, while D33 is specified
by the condition _r33 ¼ 0.

Under the imposed deformations described in (14), the evolu-
tion of the groove orientation w is given by

_w ¼ n1n2ðD11 � D22Þ � ðn2
1 � n2

2ÞD12; ð15Þ

where n1 = cosw and n2 = sinw are the components of the unit nor-
mal to the band (Fig. 1). Here and subsequently, all quantities are in
the current configuration.

Equilibrium and compatibility inside and outside the groove are
automatically satisfied because uniform deformations are assumed
both inside and outside the groove. The compatibility condition at
the groove interface is given in terms of the differences in the
velocity gradients inside and outside the groove:

Lb
ng ¼ Lng þ vnng ð16Þ

or

Db
ng ¼ Dng þ

1
2

vnng þ vgnn

� �
;

Wb
ng ¼Wng þ

1
2
ðvnng � vgnnÞ; ð17Þ
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where vn are parameters to be determined. Here, and subsequently,
Greek indices range from 1 to 2. Equilibrium balance on each side of
the interface requires that

nnrb
nghb ¼ nnrngh ð18Þ

in the current configuration. A set of incremental equations for vn is
now obtained by substituting the incremental constitutive Eq. (1)
into the incremental form of (18), using (17) to eliminate the strain
increments Db

ng. Together with the condition _rb
33 ¼ 0, this furnishes

three algebraic equations for solving v1, v2 and the unknown Db
33.

The sheet thickness outside the band h and inside the band hb are
updated based on the relations

_h ¼ D33h; _hb ¼ Db
33hb ð19Þ

The onset of sheet necking is defined by the occurrence of a
much higher maximum principal logarithmic strain rate inside
the band than outside, taken here as the condition _eb=D11 P 105,
where _eb represents the maximum strain rate inside the band.
The corresponding principal logarithmic strains e�11 and e�22, and
principal stresses r�11 and r�22 outside the band are the limit strains
and limit stresses, respectively. For a real sheet, numerous initial
imperfections can exist with different orientations. A conservative
estimate of the forming limit strain is that obtained from limit
strain values for various values of the initial band orientation wI,
and then selecting the minimum value as the actual forming limit
strain. The entire FLD of a sheet is determined by repeating the
procedure for different strain paths outside the band as prescribed
by the strain-rate ratio q. To study path-dependency of FLDs, non-
proportional loading histories are developed using combinations of
two linear strain paths. The first strain path; i.e. the pre-strain
operation, is common to all loading histories. Subsequent linear
deformation paths are imposed by varying the strain-rate ratio
for the development of an FLD applicable to that given pre-strain
path and amount.

4. Results and discussions

We assume that plastic deformation is due to slip in the Basal
hai f0001gh11�20i

� �
, Prismatic hai f10�10gh11�20i

� �
and Pyramidal

hc þ ai f�1�122gh�1�123i
� �

slip systems, and twinning on the
f10�12gh�1011i tensile twin system (see Fig. 2). It is noted that Pyra-
midal hai f1�101gh11�20i

� �
slip system is frequently referred to in

the magnesium literature. However, it has been reported that the
Prismatic hai slip is more important than Pyramidal hai slip (Ward
Flynn et al., 1961). Furthermore, as pointed out by Agnew et al.
(2001), the kinds of deformations and crystallographic textures in-
duced by Pyramidal hai slip could also result from a combination of
Basal hai slip and Prismatichai slip. Therefore, Pyramidal hai is not
included in the present paper.

The elastic stiffness tensor L is a fourth order tensor. Due to its
symmetric properties Lijkl = Ljikl = Lijlk, the elasticity tensor can be
presented in terms of the following 6 � 6 matrix:
L ¼

L1111 L1122 L1133 L1112 L1113 L1123

L2222 L2233 L2212 L2213 L2223

L3333 L3312 L3313 L3323

L1212 L1213 L1223

L1313 L1323

sym L2323

2
666666664

3
777777775

ð20Þ
The elastic anisotropy of single crystals can be included by using the
crystal elastic constants Cij (Wang and Mora, 2008). For HCP
materials,
L1111 ¼ L2222 ¼ C11; L3333 ¼ C33;

L1122 ¼ C12; L1133 ¼ C13;

L1212 ¼ C66; L1313 ¼ L2323 ¼ C44

ð21Þ

with the other components being zero. For an isotropic material one
would have

L1111 ¼ L2222 ¼ L3333 ¼ kþ 2l;
L1122 ¼ L1133 ¼ L2233 ¼ k;

L1212 ¼ L1313 ¼ L2323 ¼ l;
ð22Þ

where k ¼ Et
ð1þtÞð1�2tÞ and l ¼ E

2ð1þtÞ are the Lamè constants in terms of

the Young’s modulus E and the Poisson’s ratio t.
The reference material studied in the present paper is a magne-

sium alloy AZ31B sheet at room temperature. The experimentally
measured mechanical behavior of the sheet has been reported by
Jain and Agnew (2007). The measured {00.1} and {10.0} pole fig-
ures for the as-received reference sheet are shown in Fig. 3. This
is a typical rolling texture with major and minor peaks close to
ND, at about 5� and �5� along the RD, respectively. Fig. 3 also
shows the pole figures obtained by rotating the reference texture
by an angle a about TD. In the {00.1} pole figures, this rotation re-
sults in a vertical downward translation of the peaks in the refer-
ence texture (i.e. a downward translation of the peaks along RD).
The intensity of the basal texture as a function of tilted angle a is
shown in Fig. 4. The intensity is calculated as the ratio of the num-
ber of grains with a maximum orientation difference to the ideal
basal orientation of less than 15�, to the total number of grains.
The ideal basal grain corresponds to perfect alignment of the basal
pole with the normal direction. It is interesting to note that the cal-
culated intensity for a = 5� is higher than for a = 0� (reference tex-
ture). The reason for this is that the reference texture has its major
peak at around 5� with respect to the RD. For a = 5�, this peak is
translated into the centre of the pole figure (i.e., the ideal orienta-
tion), resulting in the observed intensification of the basal texture.
Nevertheless, the intensity decreases rapidly when the tilt angle is
relatively large.

It is very important to be noted that the decrease in the intensity
does not imply any weakening of the texture. It only represents that
the rotation changes the orientation of dominant texture compo-
nents with respect to the principal straining directions. Even thought
the intensity parallel to the new sheet normal direction is lower, the
overall texture is not weakened. It is also important to be pointed out
that the equal channel angular extrusion, torsion extrusion, and dif-
ferential speed rolling not only rotate the basal pole but also weaken
the texture. In the present paper, while effects of the basal pole rota-
tion on FLDs will be studied, influences of the texture weakening on
FLDs will not be considered.

The reference slip/twinning rate, _c0, and the rate sensitivity, m,
assumed to be same for all slip/twinning systems, are take as
0.001 s�1 and 0.05, respectively, unless otherwise mentioned. We
further assume that elasticity is isotropic with Young’s modulus
E = 2 � 105 MPa and Poisson’s ratio t = 0.33. It is worth mentioning
that E = 0.45 � 105 MPa is frequently referred to in the magnesium
literature. Wang et al. (2010c) have shown that the predicted
stress–strain curves and texture evolution based on the EVPSC are
not sensitive to the value of Young’s modulus and are very close to
those based on the VPSC models at large strains for monotonic load-
ing. For example, the calculated stress–strain curves under mono-
tonic loadings are not significantly dependent on the value of
Young’s modulus and are almost the same as the ones according to
the VPSC model at large strains. Furthermore, with the value of the
Young’s modulus used, E = 2 � 105 MPa, responses of the sheets con-
sidered are expected to be nearly rigid plastic, and the predictions
based on the EVPSC model should be almost the same as those based
on the VPSC model, even at small strains. The effect of Young’s



Fig. 2. Plastic deformation modes in hexagonal structure: (a) basal hai slip systems, (b) prismatic hai slip systems, (c) pyramidal hc + ai slip systems, and (d) tensile twin.

Fig. 3. Initial textures represented in terms of the {00.1} and {10.0} pole figures (from Wang et al. (2010b)).
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modulus on the predicted limit strains was examined for the as-
received sheet under in-plane plane strain tension. It was found that
the choice of modulus did not affect the predict FLD value by more
than 0.5%. Thus, without losing generality, using a very high value
of Young’s modulus makes it easy for us to validate the EVPSC model
based FLD code because the difference in predictions between the
EVPSC and VPSC is expected to be very small during the entire defor-
mation process. However, the deformation process may involve
unloading during strain path changes (Wu et al., 2005). Therefore,
EVPSC model is preferential to simulate strain path changes because
VPSC model cannot account for unloading.

Values of the other material parameters are estimated by fitting
numerical simulations of uniaxial tension and compression along
the RD to the corresponding experimental data for the reference
sheet. In these simulations, a strain rate of D11 = 0.001 s�1 is pre-
scribed in the loading direction, the only non-zero stress compo-
nent is the normal stress along the loading direction. All of the
strains are allowed to develop freely. Thus, in addition to the nor-



Fig. 4. The intensity of basal texture as a function of the tilted angle a (from Wang
et al. (2010b)).
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mal strains in the width and thickness directions, three shear
strains are allowed to develop. Since the c-axes of the constituent
grains are preferentially oriented normal to RD in the reference
texture, tensile twinning contributes little to plastic deformation
in uniaxial tension along the RD, but is the predominant plastic
deformation mode in uniaxial compression at small strains. Thus,
values for the material parameters associated with slip systems
are determined from uniaxial tension along the RD, while values
for the material parameters associated with twinning are deter-
mined from uniaxial compression along the RD. Fig. 5 presents
the uniaxial tension and compression true stress and plastic strain
curves along the RD. The importance of twinning in compression is
clearly revealed by the characteristic S-shape of the flow curve. The
Taylor model and EVPSC model associated with Affine self-
consistent scheme and m-effective scheme fit the experimental
stress strain curves well. Table 1 contains the material parameters
obtained from the simulations. These parameters are used in all
subsequent simulations.

We proceed by constructing FLDs using the value of the mate-
rial parameters determined above. In all the simulations reported
in the present paper, the initial geometric non-uniformity is taken
Fig. 5. True stress and plastic strain curves under uniaxial tension/compression
along the RD. The experimental data are taken from Jain and Agnew (2007).
as f0 = 0.99. It is noted that the value of f0 is usually determined by
fitting the measured limit strain at in-plane plane strain tension
(Wu et al., 1998). Unfortunately, there are no available FLDs mea-
sured at room temperature for AZ31B. Fig. 6 shows the predicted
FLDs for the reference sheet based on the Taylor, Affine and meff
models. Generally speaking, all the models predict similar overall
FLDs, which are analogical to the one obtained by Neil and Agnew
(2009) at room temperature. It is seen from Fig. 6 that the pre-
dicted major limit strain e�11 decreases with q to reach its lowest
point at q � 0.1 for all the models, and then increases until
q = 0.4, 0.2 and 0.3 for the Taylor, Affine and meff models, respec-
tively. With further increasing q; e�11 once again decreases. It is
interesting to note that the ‘‘hump’’ shown in Fig. 6 in the right-
hand side of the predicted FLDs was also found by Chino et al.
(2007) from the measured FLDs for magnesium alloy AZ31 sheet
at elevated temperature. As mentioned previously, in the simula-
tions we have scanned every 5� of a range of wI and then deter-
mined the critical groove angle that gives the minimum
localization strain, i.e. the limit strain. Fig. 7 gives the predicted
critical groove orientations. It is seen that, for all the models em-
ployed, a groove oriented at wI = 0 is favourable for necking when
�0.4 6 q 6 0.8, while the critical groove orientation wI = 5� is
found under uniaxial tension (q = �0.5). At equi-biaxial tension
(q = 1) the critical groove orientations wI = 10�, 20�, 10� are calcu-
lated based on the Taylor, Affine and meff models, respectively.
When q = 0.9, the critical groove orientation wI = 10� is found for
the meff model, while a groove oriented at wI = 0 is favourable
for the Taylor and Affine models.

Previous studies have indicated that FLDs are usually sensitive
to the material rate sensitivity (e.g. Hutchinson and Neale, 1977;
Wu et al., 1997). Fig. 8 shows the change in the predicted FLD
based on the Affine model when the value of the material rate
sensitivity m is decreased from 0.05 to 0.02. Decreasing the rate
sensitivity tends to degrade the hardening at large strains. Consis-
tent with this, Fig. 8 shows that the limit strain is decreased rela-
tive to that in Fig. 6. The effect of m on FLDs shown in Fig. 8 is
similar to that based on the M–K approach in conjunction with
phenomenological plasticity (Neale and Chater, 1980) and crystal
plasticity for FCC polycrystals (Wu et al., 1997).

It is generally accepted that texture evolution has a significant
effect on the initiation and propagation of shear bands in FCC poly-
crystalline metals (see, e.g. Inal et al., 2002a,b). In this paper,
repeating calculations reported in Fig. 6 but turning off the texture
evolution assesses the influence of the texture evolution on FLDs.
Numerical results based on the Affine model are presented in
Fig. 9. It is observed that texture evolution has a negligible effect
on limit strains for strain paths nearby in-plane plane strain ten-
sion. However, texture evolution decreases the limit strains signif-
icantly when q P 0.4 or q 6 �0.3. The predicted effect of texture
evolution shown in Fig. 9 is opposite to those found for FCC and
BCC polycrystals. Wu et al. (2004b), 2007 have reported that tex-
ture evolution significantly increases the limit strains for strain
paths q P 0 for FCC polycrystals, while Inal et al. (2005) have
found that texture evolution has a negligible influence on pre-
dicted FLDs for BCC polycrystals.

The effects of initial texture on predicted FLDs have been exten-
sively studied for FCC and BCC polycrystalline sheets (see, e.g. Wu
et al., 1997, 1998). Figs. 10–12 present the influence of initial tex-
ture on the predicted FLDs based on the Taylor model, Affine model
and meff model, respectively. All the models predict a general
trend: formability of HCP sheets can be improved through rotating
the reference texture by an angle a about the TD. It is noted that
when a = 45� the intensity of basal texture is almost the same as
that in a random texture (see Fig. 4), and consequently the
predicted limit strains are comparable to those for random texture.
Fig. 13 shows the predicted critical groove orientations when a =



Table 1
List of values of material constants for various polycrystal plasticity models.

Model Mode s0 s1 h0 h1 Latent Ath1 Ath2

Taylor Basal 13 4 5000 30 4
Prismatic 73 35 400 60 4
Pyramidal 110 83 2500 0 2
Tensile twin 31 0 0 0 4 0.82 0

Affine Basal 9 1 5000 25 4
Prismatic 79 40 590 50 4
Pyramidal 100 100 5000 0 2
Tensile twin 47 0 0 0 4 0.72 0

meff (meff = 0.1) Basal 17 6 3800 100 4
Prismatic 77 33 650 50 4
Pyramidal 148 35 9600 0 2
Tensile twin 33 0 0 0 4 0.81 0

Fig. 6. Predicted FLDs for the reference sheet based on various polycrystal plasticity
models.

Fig. 7. Predicted critical groove orientations for the reference sheet based on
various polycrystal plasticity models.

Fig. 8. Influence of the material rate sensitivity parameter m on the predicted FLDs
for the reference sheet based on the Affine model.

Fig. 9. Influence of texture evolution on the predicted FLDs for the reference sheet
based on the Affine model.
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Fig. 10. Influence of initial texture on the predicted FLDs based on the Taylor
model.

Fig. 11. Influence of initial texture on the predicted FLDs based on the Affine model.

Fig. 12. Influence of initial texture on the predicted FLDs based on the meff model.

Fig. 13. Predicted critical groove orientations for the initial texture rotated 45�
around TD based on various polycrystal plasticity models.
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45�. It is seen that a groove oriented at wI = 0 is favourable for
necking when �0.3 6 q 6 0.4, for all models employed. Based on
the Taylor model, the critical groove orientations wI = 0�, 5� and
10� are found for q = �0.4, q = �0.5 and q P 0.9, respectively.
According to the meff model, wI = 10� is the critical groove orienta-
tion for strain paths q P 0.5 or q 6 �0.4. The critical groove orien-
tations wI = 5� and 10� are found respectively for q = �0.5 and
q P 0.8 if the Affine model is applied. The effect of basal texture
on formability is even more clearly exhibited in Fig. 14, which
shows the predicted limit strain versus the tilted angle a under
in-plane plane strain tension (q = 0) based on various models. It
is clear that the predicted necking strain is dramatically increased
when the tilted angles a > 15�.

It is important to be noted that all the simulations reported
above are assumed that the major straining direction is parallel
to the RD. Fig. 15 shows the predicted major limit strains under
uniaxial tension, in-plane plane strain tension and equi-biaxial
tension when the major straining direction is parallel to the TD.
Here, the major limit strains are normalized by the corresponding
limit strains for the as-received sheet (i.e. a = 0). To avoid conges-
tion, the origin is shifted by 0.5 parallel to ordinate in Fig. 15. Obvi-
ously, the predicted formability under equi-biaxial tension (q = 1)
is same as the one in the case of the major straining direction being
parallel to the RD. Under uniaxial tension (q = �0.5), the predicted
major limit strain is independent of the titled angle a. The reason
for this is that the rotation of the texture is around the TD and thus
the rotation does not affect the uniaxial tension along the TD
(Wang et al., 2010b). Under in-plane plane strain tension (q = 0),
the formability is less dramatically improved by rotating the tex-
ture around the TD if the major straining direction is parallel to



Fig. 14. Influence of basal texture on the predicted limit strain under in-plane plane
strain tension (q = 0).

Fig. 15. Predicted major limit strains when the major straining direction is parallel
to the TD. The origin is shifted by 0.5 parallel to ordinate so as to avoid congestion.

Fig. 16. Predicted FLDs for the reference sheet pre-strained to different levels in
uniaxial tension (q = �0.5) based on the Affine model.

Fig. 17. Predicted FLDs for the reference sheet pre-strained to different levels in in-
plane plane strain tension (q = 0) based on the Affine model.
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the TD. These results are in good agreement with the experimental
observation made by Agnew et al. (2004).

Figs. 10–14, together with Figs. 6 and 7, clearly indicate that if
values of material parameters in the constitutive models are deter-
mined by best-fitting the same experimental data, the constitutive
models predict similar FLDs. In other words, the difference in the
predicted FLDs between various models is quantitative rather than
qualitative.

Finally, the effects of strain path changes on FLDs for the refer-
ence sheet are numerically studied based on the Affine model. The
sheet is pre-strained respectively in uniaxial tension (q = �0.5), in-
plane plane strain tension (q = 0) and equi-biaxial tension (q = 1).
When the designed pre-strain level is reached, the current imper-
fection f and deformation state inside and outside the groove are
used as the starting state for the subsequent strain path in the
FLD analysis.

Fig. 16 shows FLDs for both the as-received and sheets pre-
strained in uniaxial stretching up to e11 = 0.1 and 0.15, respectively.
It is clear that uniaxial pre-straining not only shifts the whole FLDs
to the left, but also shifts the FLDs upwards. The use of uniaxial
tension pre-strain can thus lead to large regions of strain path en-
hanced formability, where strain states can be reached through
non-proportional histories which could not be achieved by propor-
tional histories. Fig. 17 shows the predicted FLDs following in-
plane plane strain tension operations. As expected, the limit strain
for in-plane plane strain tension is not affected by the pre-strain-
ing. The FLD shape exhibits a trend of changing from U towards
V due to the pre-straining. More specifically, for strain paths
q P 0.3, it is found that the pre-straining has almost no effect on
the limit strain e11, but it dramatically decreases the limit strain
e22. For subsequent strain paths q < 0, the pre-straining reduces
both limit strains e11 and e22. The FLD predicted following equi-
biaxial pre-straining is shown in Fig. 18. The formability associated



Fig. 18. Predicted FLDs for the reference sheet pre-strained to different levels in
equi-biaxial tension (q = 1) based on the Affine model.

H. Wang et al. / International Journal of Solids and Structures 48 (2011) 1000–1010 1009
with subsequent in-plane plane strain tension following the equi-
biaxial tension pre-strain is predicted to shift to slightly lower ma-
jor strain and to significantly increase the minor strain. This results
in lowering the forming limits for most strain combinations in the
region to the right of in-plane plane strain tension.

Figs. 16–18 clearly indicate that the FLD of the HCP sheet is very
sensitive to strain path changes. The limit strains could be either
raised or lowered depending on the nature of the strain path
change. This observation is similar to the general trends of effects
of strain path changes on forming limits in steel and aluminum
sheets (Laukonis and Ghosh, 1978; Graf and Hosford, 1994).

As mentioned previously, extensive researches on FCC and BCC
polycrystalline sheets have confirmed that while the FLD is very
sensitive to strain path changes, the FLSD is much less path-
dependent (see, e.g. Stoughton, 2000; Wu et al., 2000, 2005). How-
ever, the FLSD and its path-dependency have not been studied for
HCP polycrystalline sheets. Fig. 19 gives the predicted limit
Fig. 19. Predicted limit stresses for the reference sheet pre-strained in various
different pre-straining paths indicated by different symbols based on the Affine
model.
stresses under proportional (linear) and non-proportional loading
histories, shown as different symbols in the figure. For example,
the legend ‘‘(�0.075,0.15)’’ indicates that the sheet is pre-strained
in strain path q ¼ �0:075

0:15 ¼ �0:5 up to strains e22 = �0.075 and
e11 = 0.15. It is noted that in addition to the three pre-strains
reported in Figs. 16–19 also includes a case with the legend
‘‘(0.03,0.15)’’, in which the sheet is pre-strained in strain path
q ¼ 0:03

0:15 ¼ 0:2 up to strains e22 = 0.03 and e11 = 0.15. It is clear that
the predicted FLSDs under non-proportional loading histories are
close to the FLSD under linear loading. Therefore, the predicted
FLSD is not sensitive to strain path changes for magnesium alloy
AZ31B sheet.

It is worth mentioning that the effects of strain path changes on
the predicted FLDs and FLSDs shown in Figs. 16–19 are based on
the Affine model. However, similar results have been obtained by
using the Taylor and meff models as well.
5. Conclusions

In this paper, we have calculated FLDs based on the classical
Taylor model and the recently developed EVPSC model with
various self-consistent schemes, in conjunction with the M–K
approach, for magnesium alloy AZ31B sheet. In all the polycrystal
plasticity models considered, both slip and twinning contribute
to plastic deformations. The material parameters for the various
models were first fitted to experimental uniaxial tension and
compression curves along the RD and then used to predict FLDs.
The effects of initial texture, texture evolution, strain rate-sensitiv-
ity, and strain path changes on forming limits have been studied.
The numerical results have been found to be in good qualitative
agreement with experimental observations. The following
conclusions can be drawn:

(1) Formability of HCP sheets can be improved by rotating the
basal pole around the TD even without grain refinement.

(2) If values of material parameters in constitutive models are
determined by best-fitting the same experimental data, the
constitutive models predict similar FLDs for magnesium
alloy AZ31B sheet. In other words, the difference in the pre-
dicted FLDs between various models is quantitative rather
than qualitative.

(3) While the FLD is very sensitive to strain path changes, the
FLSD is much less path-dependent. This implies that the
FLSD is much more favourable than the FLD in representing
forming limits in the numerical simulation of sheet metal
forming processes.
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