52 research outputs found

    ECONOMIC DIVERSIFICATION AND PRIMARY COMMODITY PROCESSING IN THE SECOND-TIER SOUTH-EAST ASIAN NEWLY INDUSTRIALIZING COUNTRIES

    Get PDF
    Instead of simply relying on static comparative advantage considerations, the governments of the three second-tier South-East Asian newly industrializing countries of Indonesia, Malaysia and Thailand have all intervened to diversify their economies. Such diversification has included the promotion of new crops (e.g. oil palm) and natural resource exploitation, i.e. diversification of primary production, as well as the promotion of manufacturing. Besides import-substituting and export-oriented manufacturing, primary commodity processing and resource-based manufacturing more broadly have been very important for the industrialization of these countries. Malaysia´s palm-oil refining, Thailand´s agro-processing and Indonesia´s plywood manufacturing have figured significantly in their development of internationally competitive industrial capabilities.

    Modelling the future of the Hawaiian honeycreeper : an ecological and epidemiological problem

    Get PDF
    The Hawaiian honeycreeper (Drepanididae) faces the threat of extinction; this is believed to be due primarily to predation from alien animals, endemic avian malaria (Plasmodium relictum) and climate change. A deterministic SI modelling approach is developed, incorporating these three factors and a metapopulation approach in conjunction with a quasi-equilibrium assumption to simplify the vector populations. This enables the qualitative study of the behaviour of the system. Numerical results suggest that although (partial) resistance to avian malaria may be advantageous for individual birds, allowing them to survive infection, this allows them to become carriers of infection and hence greatly increases the spread of this disease. Predation obviously reduces the life-expectancy of honeycreepers, but in turn this reduces the spread of infection from resistant carriers; therefore the population-level impact of predation is reduced. Various control strategies proposed in the literature are also considered and it is shown that predation control could either help or hinter, depending upon resistance of the honeycreeper species. Captive propagation or habitat restoration may be the best feasible solution to the loss of both heterogeneity within the population and the loss of the species as a whole

    Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases

    Get PDF
    Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim to address key questions on the dynamics of transmission and control of nine NTDs: Chagas disease, visceral leishmaniasis, human African trypanosomiasis, leprosy, soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. Several common themes resonate throughout these analyses, including: the importance of epidemiological setting on the success of interventions; targeting groups who are at highest risk of infection or re-infection; and reaching populations who are not accessing interventions and may act as a reservoir for infection,. The results also highlight the challenge of maintaining elimination 'as a public health problem' when true elimination is not reached. The models elucidate the factors that may be contributing most to persistence of disease and discuss the requirements for eventually achieving true elimination, if that is possible. Overall this collection presents new analyses to inform current control initiatives. These papers form a base from which further development of the models and more rigorous validation against a variety of datasets can help to give more detailed advice. At the moment, the models' predictions are being considered as the world prepares for a final push towards control or elimination of neglected tropical diseases by 2020

    Tensor Polarization of the phi meson Photoproduced at High t

    Full text link
    As part of a measurement of the cross section of ϕ\phi meson photoproduction to high momentum transfer, we measured the polar angular decay distribution of the outgoing K+K^+ in the channel ϕK+K\phi \to K^+K^- in the ϕ\phi center-of-mass frame (the helicity frame). We find that s-channel helicity conservation (SCHC) holds in the kinematical range where tt-channel exchange dominates (up to t2.5-t \sim 2.5 GeV2^2 for EγE_{\gamma}=3.6 GeV). Above this momentum, uu-channel production of a ϕ\phi meson dominates and induces a violation of SCHC. The deduced value of the ϕNN\phi NN coupling constant lies in the upper range of previously reported values.Comment: 6 pages; 5 figure

    Data-driven models to predict the elimination of sleeping sickness in former Equateur province of DRC

    Get PDF
    Approaching disease elimination, it is crucial to be able to assess progress towards key objectives using quantitative tools. For Gambian human African trypanosomiasis (HAT), the ultimate goal is to stop transmission by 2030, while intermediary targets include elimination as a public health problem − defined as <1 new case per 10,000 inhabitants in 90% of foci, and <2000 reported cases by 2020. Using two independent mathematical models, this study assessed the achievability of these goals in the former Equateur province of the Democratic Republic of Congo, which historically had endemic levels of disease. The two deterministic models used different assumptions on disease progression, risk of infection and non-participation in screening, reflecting biological uncertainty. To validate the models a censor-fit-uncensor procedure was used to fit to health-zone level data from 2000 to 2012; initially the last six years were censored, then three and the final step utilised all data. The different model projections were used to evaluate the expected transmission and reporting for each health zone within each province under six intervention strategies using currently available tools. In 2012 there were 197 reported HAT cases in former Equateur reduced from 6828 in 2000, however this reflects lower active testing for HAT (1.3% of the population compared to 7.2%). Modelling results indicate that there are likely to be <300 reported cases in former Equateur in 2020 if screening continues at the mean level for 2000–2012 (6.2%), and <120 cases if vector control is introduced. Some health zones may fail to achieve <1 new case per 10,000 by 2020 without vector control, although most appear on track for this target using medical interventions alone. The full elimination goal will be harder to reach; between 39 and 54% of health zones analysed may have to improve their current medical-only strategy to stop transmission completely by 2030
    corecore