44 research outputs found

    On the solutions of the Schrodinger equation with some molecular potentials: wave function ansatz

    Get PDF
    Making an ansatz to the wave function, the exact solutions of the DD% -dimensional radial Schrodinger equation with some molecular potentials like pseudoharmonic and modified Kratzer potentials are obtained. The restriction on the parameters of the given potential, δ\delta and η\eta are also given, where η\eta depends on a linear combination of the angular momentum quantum number ℓ\ell and the spatial dimensions DD and δ\delta is a parameter in the ansatz to the wave function. On inserting D=3, we find that the bound state eigensolutions recover their standard analytical forms in literature.Comment: 14 page

    Physical model of near-Earth asteroid (1917) Cuyo from ground-based optical and thermal-IR observations

    Get PDF
    Context: The near-Earth asteroid (1917) Cuyo was subject to radar and lightcurve observations during a close approach in 1989, and observed up until 2008. It was selected as one of our ESO Large Programme targets, aimed at observational detections of the YORP effect through long-term lightcurve monitoring and physical modelling of near-Earth asteroids. Aims: We aimed to constrain physical properties of Cuyo: shape, spin-state, and spectroscopic & thermophysical properties of the surface. Methods: We acquired photometric lightcurves of Cuyo spanning the period between 2010 and 2013, which we combined with published lightcurves from 1989-2008. Our thermal-infrared observations were obtained in 2011. Rotationally-resolved optical spectroscopy data were acquired in 2011 and combined with all available published spectra to investigate any surface material variegation. Results: We developed a convex lightcurve-inversion shape of Cuyo that suggests the presence of an equatorial ridge, typical for an evolved system close to shedding mass due to fast rotation. We determine limits of YORP strength through lightcurve-based spin-state modelling, including both negative and positive acceleration values, between -0.7x10-8 rad day-2 and 1.7x10-8 rad day-2. Thermo-physical modelling with the ATPM provides constraints on the geometric albedo, PV = 0.24 ± 0.07, the effective diameter Deff = 3.15 ± 0.08 km, the thermal inertia, 44 ±- 9 J m-2s-1/2K-1, and a roughness fraction of 0.52 ± 0.26. This enabled a YORP strength prediction of (-6.39 ± 0.96)x10-10 rad day-2. We also see evidence of surface compositional variation. Conclusions: The low value of YORP predicted by means of thermophysical analysis, consistent with the results of the lightcurve study, might be due to the self-limiting properties of rotational YORP, possibly involving movement of sub-surface and surface material. This may also be consistent with the surface compositional variation that we see. The physical model of Cuyo can be used to investigate cohesive forces as a way to explain why some targets survive rotation rates faster than the fission limit

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk

    New near-aphelion light curves of Comet 2P/Encke

    No full text
    We present new, near-aphelion, time series of photometry of Comet 2P/ Encke in Cousins-R band. With these light curves we find that the dominant, synodic rotational periodicity is either P0 = 11.079 ± 0.009 h or 2P0 = 22.158 ± 0.012 h. This is in contrast to data from the 1980s published by others that are consistent with 15.08- and 22.6-h periods. Those periods do not satisfy our phased light curves, and also the 1980s data are not easily reconciled with our periods. This could be due to P/Encke having non-principal axis rotation or due to a drift in the rotation period caused by outgassing torques. We observed the comet at five epochs: July, August, September, and October 2001, and September 2002, and the comet was at times intrinsically brighter than expected for a bare nucleus, due to an apparent contribution from an unresolved coma. Three-quarters of the data were obtained in the second and fifth epochs, and we analyzed these two time series using both the phase-dispersion minimization and "WindowCLEAN" techniques. At both epochs and with both techniques strong periodicities were found near frequencies f0 = 2.16 d^-1 and f1 = 4.35 d^-1. By then using visual inspection of the phased light curves to corroborate these frequencies, and by using the data from the other three epochs to properly align light curve features, we were able to derive P0 and 2P0 as the only solutions that satisfy all our observations. The periodicity due to f1 is clearly seen in our data, but we cannot tell from our data alone whether it is a manifestation of the nucleus's shape, non-principal axis rotation, or both. © 2004 Elsevier Inc. All rights reserved

    Real-time PCR analysis for blood cell lineage specific markers.

    No full text
    We here describe the methods for the isolation of distinct hematopoietic subpopulations, as defined by their immune phenotype by fluorescence-activated cell sorting, and how these cells can be analyzed even at a single-cell level for the gene expression of a number of transcription factors and other differentiation markers
    corecore