1,021 research outputs found

    Surface morphology in engineering applications: Influence of roughness on sliding and wear in dry fretting

    Get PDF
    Influence of initial surface roughness on friction and wear processes under fretting conditions was investigated experimentally. Rough surfaces (Ra=0.15-2.52 [mu]m) were prepared on two materials: carbon alloy (AISI 1034) and titanium alloy (Ti-6Al-4V). Strong influence of initial surface roughness on friction and wear processes is reported for both tested materials. Lower coefficient of friction and increase in wear rate was observed for rough surfaces. Wear activation energy is increasing for smoother surfaces. Lower initial roughness of surface subjected to gross slip fretting can delay activation of wear process and reduce wear rate; however, it can slightly increase the coefficient of friction

    Epigenetic Modifications in Stress Response Genes Associated With Childhood Trauma

    Get PDF
    Adverse childhood experiences (ACEs) may be referred to by other terms (e.g., early life adversity or stress and childhood trauma) and have a lifelong impact on mental and physical health. For example, childhood trauma has been associated with posttraumatic stress disorder (PTSD), anxiety, depression, bipolar disorder, diabetes, and cardiovascular disease. The heritability of ACE-related phenotypes such as PTSD, depression, and resilience is low to moderate, and, moreover, is very variable for a given phenotype, which implies that gene by environment interactions (such as through epigenetic modifications) may be involved in the onset of these phenotypes. Currently, there is increasing interest in the investigation of epigenetic contributions to ACE-induced differential health outcomes. Although there are a number of studies in this field, there are still research gaps. In this review, the basic concepts of epigenetic modifications (such as methylation) and the function of the hypothalamic-pituitary-adrenal (HPA) axis in the stress response are outlined. Examples of specific genes undergoing methylation in association with ACE-induced differential health outcomes are provided. Limitations in this field, e.g., uncertain clinical diagnosis, conceptual inconsistencies, and technical drawbacks, are reviewed, with suggestions for advances using new technologies and novel research directions. We thereby provide a platform on which the field of ACE-induced phenotypes in mental health may build

    Measurement of Ultra-Low Potassium Contaminations with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Among the radio-isotopes, \k40 is one of the most abundant and yet whose signatures are difficult to reject. Procedures were devised to measure trace potassium concentrations in the inorganic salt CsI as well as in organic liquid scintillator (LS) with Accelerator Mass Spectrometry (AMS), giving, respectively, the \k40-contamination levels of ∼10−10\sim 10^{-10} and ∼10−13\sim 10^{-13} g/g. Measurement flexibilities and sensitivities are improved over conventional methods. The projected limiting sensitivities if no excess of potassium signals had been observed over background are 8×10−138 \times 10^{-13} g/g and 3×10−173 \times 10^{-17} g/g for the CsI and LS, respectively. Studies of the LS samples indicate that the radioactive contaminations come mainly in the dye solutes, while the base solvents are orders of magnitude cleaner. The work demonstrate the possibilities of measuring naturally-occurring isotopes with the AMS techniques.Comment: 18 pages, 4 figures, 3 table

    Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Procedures were devised to measure trace concentrations of I-129 in the inorganic salt CsI as well as in organic liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to improvement in sensitivities by several orders of magnitude over other methods. No evidence of their existence in these materials were observed. Limits of < 6 X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI and liquid scintillator, respectively, were derived.These are the first results in a research program whose goals are to develop techniques to measure trace radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass Spectrometr

    Wear resistant multilayer nanocomposite WC1−x/C coating on Ti–6Al–4V titanium alloy

    Get PDF
    A significant improvement of tribological properties on Ti–6Al–4V has been achieved by developed in this study multilayer treatment method for the titanium alloys. This treatment consists of an intermediate 2 μm thick TiCxNy layer which has been deposited by the reactive arc evaporation onto a diffusion hardened material with interstitial O or N atoms by glow discharge plasma in the atmosphere of Ar+O2 or Ar+N2. Subsequently, an external 0.3 μm thin nanocomposite carbon-based WC1−x/C coating has been deposited by a reactive magnetron sputtering of graphite and tungsten targets. The morphology, microstructure, chemical and phase compositions of the substrate material after treatment and coating deposition have been investigated with use of AFM, SEM, EDX, XRD, 3D profilometry and followed by tribological investigation of wear and friction analysis. An increase of hardness in the diffusion treated near-surface zone of the Ti–6Al–4V substrate has been achieved. In addition, a good adhesion between the intermediate gradient TiCxNy coating and the Ti–6Al–4V substrate as well as with the external nanocomposite coating has been obtained. Significant increase in wear resistance of up to 94% when compared to uncoated Ti–6Al–4V was reported. The proposed multilayer system deposited on the Ti–6Al–4V substrate is a promising method to significantly increase wear resistance of titanium alloys

    ATIC and PAMELA Results on Cosmic e^\pm Excesses and Neutrino Masses

    Get PDF
    Recently the ATIC and PAMELA collaborations released their results which show the abundant e^\pm excess in cosmic rays well above the background, but not for the \bar{p}. Their data if interpreted as the dark matter particles' annihilation imply that the new physics with the dark matter is closely related to the lepton sector. In this paper we study the possible connection of the new physics responsible for the cosmic e^\pm excesses to the neutrino mass generation. We consider a class of models and do the detailed numerical calculations. We find that these models can natually account for the ATIC and PAMELA e^\pm and \bar{p} data and at the same time generate the small neutrino masses.Comment: 7 pages, 5 figures. Published version with minor corrections and more reference

    Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms

    Full text link
    We report an experimental investigation of electromagnetically induced transparency in a multi-level cascade system of cold atoms. The absorption spectral profiles of the probe light in the multi-level cascade system were observed in cold Rb-85 atoms confined in a magneto-optical trap, and the dependence of the spectral profile on the intensity of the coupling laser was investigated. The experimental measurements agree with the theoretical calculations based on the density matrix equations of the rubidium cascade system.Comment: 9 pages, 5 figure

    Hexatic-Herringbone Coupling at the Hexatic Transition in Smectic Liquid Crystals: 4-ϵ\epsilon Renormalization Group Calculations Revisited

    Full text link
    Simple symmetry considerations would suggest that the transition from the smectic-A phase to the long-range bond orientationally ordered hexatic smectic-B phase should belong to the XY universality class. However, a number of experimental studies have constantly reported over the past twenty years "novel" critical behavior with non-XY critical exponents for this transition. Bruinsma and Aeppli argued in Physical Review Letters {\bf 48}, 1625 (1982), using a 4−ϵ4-\epsilon renormalization-group calculation, that short-range molecular herringbone correlations coupled to the hexatic ordering drive this transition first order via thermal fluctuations, and that the critical behavior observed in real systems is controlled by a `nearby' tricritical point. We have revisited the model of Bruinsma and Aeppli and present here the results of our study. We have found two nontrivial strongly-coupled herringbone-hexatic fixed points apparently missed by those authors. Yet, those two new nontrivial fixed-points are unstable, and we obtain the same final conclusion as the one reached by Bruinsma and Aeppli, namely that of a fluctuation-driven first order transition. We also discuss the effect of local two-fold distortion of the bond order as a possible missing order parameter in the Hamiltonian.Comment: 1 B/W eps figure included. Submitted to Physical Review E. Contact: [email protected]
    • …
    corecore