31 research outputs found

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF
    We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.EC/H2020/633053/EU/Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium/ EUROfusio

    BOTTOM-UP AND TOP-DOWN INTERACTIONS IN COASTAL INTERFACE SYSTEMS

    Get PDF
    The land–sea margin encompasses a variety of hard and soft-bottom habitats where organisms are exposed to a dynamic range of aquatic and atmospheric conditions dependent on a rhythm set by the tides. In this chapter, we focus on rocky intertidal and salt marsh ecosystems, which have been extensively studied on many continents. Both rocky shore and salt marsh communities exhibit strong and consistent patterns of intertidal zonation over relatively compressed spatial scales, making them excellent systems for understanding the context-dependency of species interactions. Hard-bottomed rocky intertidal communities are dominated by marine macroalgae and sessile marine invertebrates extending their reach to the furthest edge of the influence of sea spray, while soft-bottomed salt marsh communities are anchored by terrestrial plants with adaptations or tolerance to inundation by salty and brackish waters. Rocky shore communities may be battered by the full force of large ocean waves or gently lapped with seawater on more protected shorelines. In contrast, salt marshes are restricted to quiet waters where sediment accretion by plants is the main mechanism for habitat creation. Both communities may experience very large tidal excursions or only minimal ones, depending on the local dynamics of the tides, with corresponding consequences for the spatial extent of these communities across the shoreline. The steep environmental gradients and distinctive biological zonation patterns that characterize both rocky shore and salt marsh ecosystems (Fig. 7.1) have provided ecologists with accessible and highly tractable ecosystems for investigating the role of bottom-up and top-down factors along environmental gradients
    corecore