1,423 research outputs found

    Über den Einfluss von Oberwellen auf das Verhalten des Hysteresemotors

    Get PDF

    Lateral manipulation of single adsorbates and substrate atoms with the scanning tunneling microscope

    Get PDF
    The stability and precision of modern scanning-tunneling-microscope (STM) systems allow positioning of the tip on a subnanometer scale. This advancement has stimulated diverse efforts on surface modifications in the nanometer and even atomic range, as recently reviewed by Avouris. The lateral movement of individual adatoms and molecules in a controlled manner on solid surfaces and the construction of structures on a nanoscale were first demonstrated by Eigler and collaborators at 4 K. The reason for operating the STM at low temperatures (apart from increased stability and sensitivity of the STM setup itself) is the necessity to freeze the motion of single adsorbates, which are very often mobile at ambient temperatures. By selecting strongly bonded adsorbate/substrate combinations and large molecules, it was possible to extend the lateral manipulation technique even to room temperature. In the case of large molecules, not only their translational motion but also internal flexure of the molecule during the positioning process must be considered. In general, different physical and chemical interaction mechanisms between tip and sample can be exploited for atomic-scale manipulation. We will concentrate in the following on lateral manipulation where solely the forces that act on the adsorbate because of the proximity of the tip are used. This means that long-range van der Waals and short-range chemical forces can be used to move atoms or molecules along the surface. No bias voltage or tunneling current is necessary. Apart from this technique, additional advances using the effects caused by the electric field generated by the bias voltage between tip and sample and by the current flowing through the gap region can be used for atomic or molecular modification

    Electron induced ortho-meta isomerization of single molecules

    Get PDF
    FWN – Publicaties zonder aanstelling Universiteit Leide

    Shear viscosity of the Quark-Gluon Plasma from a virial expansion

    Full text link
    We calculate the shear viscosity η\eta in the quark-gluon plasma (QGP) phase within a virial expansion approach with particular interest in the ratio of η\eta to the entropy density ss, i.e. η/s\eta/s. The virial expansion approach allows us to include the interactions between the partons in the deconfined phase and to evaluate the corrections to a single-particle partition function. In the latter approach we start with an effective interaction with parameters fixed to reproduce thermodynamical quantities of QCD such as energy and/or entropy density. We also directly extract the effective coupling \ga_{\rm V} for the determination of η\eta. Our numerical results give a ratio η/s0.097\eta/s\approx 0.097 at the critical temperature TcT_{\rm c}, which is very close to the theoretical bound of 1/(4π)1/(4\pi). Furthermore, for temperatures T1.8TcT\leq 1.8 T_{\rm c} the ratio η/s\eta/s is in the range of the present experimental estimates 0.10.30.1-0.3 at RHIC. When combining our results for η/s\eta/s in the deconfined phase with those from chiral perturbation theory or the resonance gas model in the confined phase we observe a pronounced minimum of η/s\eta/s close to the critical temperature TcT_{\rm c}.Comment: Published in Eur. Phys. J. C, 7 pages, 2 figures, 3 tabl

    Interatomic potentials for atomistic simulations of the Ti-Al system

    Full text link
    Semi-empirical interatomic potentials have been developed for Al, alpha-Ti, and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large database of experimental as well as ab-initio data. The ab-initio calculations were performed by the linear augmented plane wave (LAPW) method within the density functional theory to obtain the equations of state for a number of crystal structures of the Ti-Al system. Some of the calculated LAPW energies were used for fitting the potentials while others for examining their quality. The potentials correctly predict the equilibrium crystal structures of the phases and accurately reproduce their basic lattice properties. The potentials are applied to calculate the energies of point defects, surfaces, planar faults in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al system, the proposed potentials provide reasonable description of the lattice thermal expansion, demonstrating their usefulness in the molecular dynamics or Monte Carlo studies at high temperatures. The energy along the tetragonal deformation path (Bain transformation) in gamma-TiAl calculated with the EAM potential is in a fairly good agreement with LAPW calculations. Equilibrium point defect concentrations in gamma-TiAl are studied using the EAM potential. It is found that antisite defects strongly dominate over vacancies at all compositions around stoichiometry, indicating that gamm-TiAl is an antisite disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press

    Forward K+ production in subthreshold pA collisions at 1.0 GeV

    Get PDF
    K+ meson production in pA (A = C, Cu, Au) collisions has been studied using the ANKE spectrometer at an internal target position of the COSY-Juelich accelerator. The complete momentum spectrum of kaons emitted at forward angles, theta < 12 degrees, has been measured for a beam energy of T(p)=1.0 GeV, far below the free NN threshold of 1.58 GeV. The spectrum does not follow a thermal distribution at low kaon momenta and the larger momenta reflect a high degree of collectivity in the target nucleus.Comment: 4 pages, 3 figure

    The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium

    Get PDF
    The RNA chaperone, Hfq, plays a diverse role in bacterial physiology beyond its original role as a host factor required for replication of Qβ RNA bacteriophage. In this study, we show that Hfq is involved in the expression and secretion of virulence factors in the facultative intracellular pathogen, Salmonella typhimurium. A Salmonella hfq deletion strain is highly attenuated in mice after both oral and intraperitoneal infection, and shows a severe defect in invasion of epithelial cells and a growth defect in both epithelial cells and macrophages in vitro. Surprisingly, we find that these phenotypes are largely independent of the previously reported requirement of Hfq for expression of the stationary phase sigma factor, RpoS. Our results implicate Hfq as a key regulator of multiple aspects of virulence including regulation of motility and outer membrane protein (OmpD) expression in addition to invasion and intracellular growth. These pleiotropic effects are suggested to involve a network of regulatory small non-coding RNAs, placing Hfq at the centre of post-transcriptional regulation of virulence gene expression in Salmonella. In addition, the hfq mutation appears to cause a chronic activation of the RpoE-mediated envelope stress response which is likely due to a misregulation of membrane protein expression
    corecore