111 research outputs found

    Suppressed recombination and unique candidate genes in the divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in wheat

    Get PDF
    Fhb1 is a prominent Fusarium head blight resistance locus of wheat, which has been successfully introgressed in adapted breeding material, where it confers a significant increase in overall resistance to the causal pathogen Fusarium graminearum and the fungal virulence factor and mycotoxin deoxynivalenol. The Fhb1 region has been resolved for the susceptible wheat reference genotype Chinese Spring, yet the causal gene itself has not been identified in resistant cultivars. Here, we report the establishment of a 1 Mb contig embracing Fhb1 in the donor line CM-82036. Sequencing revealed that the region of Fhb1 deviates from the Chinese Spring reference in DNA size and gene content, which explains the repressed recombination at the locus in the performed fine mapping. Differences in genes expression between near-isogenic lines segregating for Fhb1 challenged with F. graminearum or treated with mock were investigated in a time-course experiment by RNA sequencing. Several candidate genes were identified, including a pathogen-responsive GDSL lipase absent in susceptible lines. The sequence of the Fhb1 region, the resulting list of candidate genes, and near-diagnostic KASP markers for Fhb1 constitute a valuable resource for breeding and further studies aiming to identify the gene(s) responsible for F. graminearum and deoxynivalenol resistance.(VLID)141383

    Tracing the ancestry of modern bread wheats

    Get PDF
    For more than 10,000 years, the selection of plant and animal traits that are better tailored for human use has shaped the development of civilizations. During this period, bread wheat (Triticum aestivum) emerged as one of the world’s most important crops. We use exome sequencing of a worldwide panel of almost 500 genotypes selected from across the geographical range of the wheat species complex to explore how 10,000 years of hybridization, selection, adaptation and plant breeding has shaped the genetic makeup of modern bread wheats. We observe considerable genetic variation at the genic, chromosomal and subgenomic levels, and use this information to decipher the likely origins of modern day wheats, the consequences of range expansion and the allelic variants selected since its domestication. Our data support a reconciled model of wheat evolution and provide novel avenues for future breeding improvement.</p

    Barley: From brittle to stable harvest.

    Get PDF
    Selection and domestication of plants with genes that prevent grains from shattering in cereals was essential for human civilization&#39;s transition to agriculture-based societies. In this issue, Pourkheirandish et&nbsp;al. show that domestication of barley required evolution of a molecular system distinct from other grains, such as rice and maize, and reveal that present-day cultivars derive from two ancient domestication centers

    CREDO: A web-based tool for computational detection of conserved sequence motifs in noncoding sequences.

    No full text
    CREDO is a user-friendly, web-based tool that integrates the analysis and results of different algorithms widely used for the computational detection of conserved sequence motifs in noncoding sequences. It enables easy comparison of the individual results. CREDO offers intuitive interfaces for easy and rapid configuration of the applied algorithms and convenient views on the results in graphical and tabular formats

    Differential and complementary selection of heterotic groups.

    No full text

    The arabidopsis genome and its use in cereal genomics.

    No full text

    Significant sequence similarities in promoters and precursors of Arabidopsis thaliana non-conserved microRNAs.

    No full text
    Some plant microRNAs have been shown to be de novo generated by inverted duplication from their target genes. Subsequent duplication events potentially generate multigene microRNA families. Within this article we provide supportive evidence for the inverted duplication model of plant microRNA evolution. First, we report that the precursors of four Arabidopsis thaliana microRNA families, miR157, miR158, miR405 and miR447 share nearly identical nucleotide sequences throughout the whole miRNA precursor between the family members. The extent and degree of sequence conservation is suggestive of recent evolutionary duplication events. Furthermore we found that sequence similarities are not restricted to the transcribed part but extend into the promoter regions. Thus the duplication event most probably included the promoter regions as well. Conserved elements in upstream regions of miR163 and its targets were also detected. This implies that the inverted duplication of target genes, at least in certain cases, had included the promoters of the target genes. Sequence conservation within promoters of miRNA families as well as between miRNA and its potential progenitor gene can be exploited for understanding the regulation of microRNA genes

    How can we deliver the large plant genomes? Strategies and perspectives.

    No full text
    The first sequenced plant genome, from the small mustard plant Arabidopsis thaliana, was published at the end of 2000. The sequencing of the rice genome is well under way. The sizes of plant genomes vary by a factor of up to 1000, and many important crop plants have genomes that are several times larger than the human genome. To gain insight into the gene toolbox of plant species, numerous large-scale EST sequencing projects have been launched successfully, and analysis procedures are constantly being refined to add maximum value to the sequence data. In addition, an alternative approach to exclude repetitive noncoding DNA and to enrich sequence libraries for gene-containing genomic regions has been developed. This strategy has the potential to deliver information about both genes and regulatory regions outside the transcribed regions
    • …
    corecore