62 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET results in support to ITER

    Get PDF

    Momentum losses by charge exchange with neutral particles in H-mode discharges at JET

    No full text
    The effect of a neutral density background on the toroidal angular momentum and kinetic energy profiles has been investigated in JET. Under equivalent conditions but with increasing gas fuelling during the flat top phase, it has been observed that both the edge rotation and temperature decrease. The increase in electron density was not sufficient to compensate the rotation and temperature loss such that both energy and momentum confinement times are significantly reduced. The edge localized mode behaviour is observed to be significantly affected by the increased neutral influx. A simple 1.5D fluid model has been used to qualitative capture the neutral transport response within the plasma, followed by a forward model of the passive charge-exchange (CX) emission of carbon to obtain a corrected radial neutral density profile. It has been found that the neutral density is sharply attenuated over the edge region, with similar edge magnitudes in both the non-fuelled (Gamma(0)/n(e) similar to 1.2ms(-1)) and maximum fuelled case (Gamma(0)/n(e) similar to 2.5ms(-1)). Discharges with reversed-B operation exhibited even higher normalized neutral fluxes related to first orbit effects and increased wall interactions. Over the full neutral influx range, a decrease in pedestal thermal Mach number from 0.25 to 0.14 was observed. Increased neutral penetration up to the pedestal top (r/a similar to 0.9) due to multiple CX interactions is obtained from the interpretive model. Under these multiple neutral-ion interactions, the impact on the CX loss of angular momentum is larger compared with the CX energy loss. The drag torque was seen to increase up to 10% of the total applied torque, while energy losses appeared to be smaller. The accuracy of this global approach method is unfortunately limited; however, the estimated momentum sink was found comparable to the torque required to explain the discrepancy between observed global energy and momentum confinement
    corecore